www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Physik" - Tetraederlücken
Tetraederlücken < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Tetraederlücken: Berechnung
Status: (Frage) beantwortet Status 
Datum: 00:52 Fr 25.01.2008
Autor: Madmaxy

Aufgabe
[mm] \wurzel{6}/4-1/2) [/mm]


Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:
http://www.chemieonline.de/forum/showthread.php?p=2215123207#post2215123207

Hallo,

ich muss den Rechenweg für das Radienverhältnis von Tetraederlücken in Ionenverbindungen logisch erklären

das tetraeder hat eine seitenlänge von a.
damit haben die außenkugeln einen radius von 0,5a.
der abstand der ecken zur mitte des tetraeder ist [mm] a\wurzel{6}/4. [/mm]
die innenkugel hat also einen radius von [mm] a(\wurzel{6}/4-1/2). [/mm] Das Ergebnis ist 0,225
Kann mir bitte jemand die Berechnung den Abstand der Ecken zur Mitte erklären - also [mm] \wurzel{6}/4 [/mm]
Ich komme leider nicht dahinter
Es sollte über Pythagoras berechnet werden.
Ich danke für jede Hilfe

Gruss

        
Bezug
Tetraederlücken: Antwort
Status: (Antwort) fertig Status 
Datum: 07:11 Fr 25.01.2008
Autor: Steffi21

Hallo, wenn du den Abstand der Eckpunkte des Tetraeders zur Mitte berechnen möchtest, so kannst du um den Tetraeder einen Würfel legen, du kennst die Seite a vom Tetraeder, entspricht der Flächendiagonale vom Würfel, somit kannst du die Kantenlänge vom Würfel berechnen, der Abstand der Eckpunkte des Tetraeders zum Mittelpunkt ist somit die halbe Raumdiagonale vom Würfel, du hast überall rechtwinklige Dreiecke,
schaue dir mal bitte diese  []Skizze an, du hast schon den Pythagoras richtig erkannt,
Steffi




Bezug
                
Bezug
Tetraederlücken: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:08 Fr 25.01.2008
Autor: Madmaxy

[mm] \wurzel{6}/2 [/mm]

Hi Steffi,

danke für den Tip mit dem Würfel. Ich habe jetzt überall rechtwinklige Dreiecke, wo die Kantenlänge a des Tetraeders die Hypothenuse ergibt.
Ich konnte somit die Kantenlänge des Würfels berechnen.
Was ich nicht verstehe ist, du sagtest der Abstand von der Ecke zur Mitte des tetraeders ist die Hälfte der Raumdiagonale.
Kannst du mir einen Rechentipp geben.
Sagen wir die Kantenlänge des Tetraeders a = 1;
damit ist die Kantenlänge Würfel s= 0,707.

Wie mache ich weiter.
aber herzlichen Dank schon mal vorweg. super ideee mit dem Würfel



Bezug
                        
Bezug
Tetraederlücken: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:30 Fr 25.01.2008
Autor: Steffi21

Hallo, du brauchst dir für a keine Zahl vorgeben, allgemein:

1. Berechnung Kantenlänge Würfel, nennen wir die x,

[mm] a^{2}=x^{2}+x^{2} [/mm]

[mm] a^{2}=2x^{2} [/mm]

[mm] x=\bruch{a}{\wurzel{2}} [/mm]

2. Berechnung der halben Raumdiagonale, nennen wir sie y, in meinem Link nehmen wir das gelbe Dreieck, 1. Kathete ist halbe Flächendiagonale des Würfels, also halbe Kantenlänge Tetraeder [mm] \bruch{a}{2}, [/mm] 2. Kathete ist halbe Kantenlänge vom Würfel [mm] \bruch{a}{2\wurzel{2}}, [/mm] ist im Link blau gezeichnet,  

[mm] y^{2}=(\bruch{a}{2})^{2}+(\bruch{a}{2\wurzel{2}})^{2} [/mm]

[mm] y^{2}=\bruch{a^{2}}{4}+\bruch{a^{2}}{8} [/mm]

[mm] y^{2}=\bruch{2a^{2}}{8}+\bruch{a^{2}}{8} [/mm]

[mm] y^{2}=\bruch{3a^{2}}{8} [/mm]

[mm] y^{2}=\bruch{6a^{2}}{16} [/mm]

[mm] y=\bruch{\wurzel{6}}{4}a [/mm]

Steffi







Bezug
                        
Bezug
Tetraederlücken: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:32 Fr 25.01.2008
Autor: Event_Horizon

Hallo!

die Kantenlänge des Tetraeders ist gleichzeitig die Diagonale auf der Oberfläche des Würfels. Zusammen mit einer Kante des Würfelst, die du ja berechnet hast, und der Raumdiagonalen hast du ein rechtwinkliges Dreieck.

Ich empfehle dir übrigens, bei sowas weniger mit Kommazahlen zu arbeiten.

Und noch ein Tipp: Bei Würfeln der Kantenlänge a ist die Flächendiagonale immer [mm] \wurzel{2}*a [/mm] und die Raumdiagonale [mm] \wurzel{3}*a [/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de