Textaufgaben < Klassen 8-10 < Schule < Mathe < Vorhilfe
|
Aufgabe | 1. Aufgabe: Wenn ich meine gedachte Zahl durch 3/5 dividiere und davon die Hälfte meiner Zahl subtrahiere, erhalte ich 21. Bitte sagen Sie mir, welche Zahl ich mir ausgedacht habe.
Lösung:
(x * 5/3) - 1/2x = 21
x = 18
2. Aufgabe: Aus 80%igem Alkohol wird durch Verdünnen mit 38%igem Alkohol ein 45%iger Alkohol gewonnen. Wie viel Liter 38%iger Alkohol muss zu den 100 l 80%igem Alkohol hinzugegeben werden, um 45%igen Alkohol zu erhalten?
Lösung:
100 * 0,8 + x + 0,38 = 0,45 * (100 + x)
x = 500l
3. Aufgabe: Ein Becken wird durch 2 Rohre gefüllt. Rohr 1 füllt das Becken in 6 Stunden, Rohr 2 alleine in 9 Stunden. Wie lange brauchen die Rohre zusammen?
Lösung:
1/6 + 1/9 = 1/x
x = 3,6 Std. |
Hallo,
kann bitte jemand mal meine 3 Aufgaben an schauen und mir sagen, ob ich sie richtig gerechnet habe.
Vielen Dank
Gruß Sabine
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 10:45 Mi 08.08.2007 | Autor: | M.Rex |
Hallo Sabine
> 1. Aufgabe: Wenn ich meine gedachte Zahl durch 3/5
> dividiere und davon die Hälfte meiner Zahl subtrahiere,
> erhalte ich 21. Bitte sagen Sie mir, welche Zahl ich mir
> ausgedacht habe.
>
> Lösung:
> (x * 5/3) - 1/2x = 21
> x = 18
>
> 2. Aufgabe: Aus 80%igem Alkohol wird durch Verdünnen mit
> 38%igem Alkohol ein 45%iger Alkohol gewonnen. Wie viel
> Liter 38%iger Alkohol muss zu den 100 l 80%igem Alkohol
> hinzugegeben werden, um 45%igen Alkohol zu erhalten?
>
> Lösung:
> 100 * 0,8 + x + 0,38 = 0,45 * (100 + x)
> x = 500l
Fast, du hast ein * durch ein + ersetzt
[mm] 100*0,8+(x\red{*}0,38)=0,45(100+x)
[/mm]
Aber das Ergebnis stimmt, also war es nur ein Tippfehler
>
> 3. Aufgabe: Ein Becken wird durch 2 Rohre gefüllt. Rohr 1
> füllt das Becken in 6 Stunden, Rohr 2 alleine in 9 Stunden.
> Wie lange brauchen die Rohre zusammen?
>
> Lösung:
> 1/6 + 1/9 = 1/x
> x = 3,6 Std.
Das sieht auch gut aus.
Marius
|
|
|
|