www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differenzialrechnung" - Tiefpunkte auf einer Kurve .
Tiefpunkte auf einer Kurve . < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Tiefpunkte auf einer Kurve .: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:22 Di 18.10.2005
Autor: philipp-100

Hallo,

Ich suche die Kurve der Tiefpunkte einer Schar.

Die Funktion der Schar : [mm] f(x)=5*x*e^{-a*x^2} [/mm]
[mm] f'(x)=5*e^{-a*x^2}*(1-2*a*x^2) [/mm]

Xtrempunkte hab ich wurzel(0,5/a) -wurzel(0,5/a)

mein Lösungsbuch sagt ,dass wurzel(0,5/a) ein Tiefpunkt ist.
Ich bekomme immer einen Hochpunt raus.
Wer hat Recht ?

Wenn ich jetzt die Kurve berechnen will , muss ich doch den Tiefpunkt nach a auflösen und dann in die originalgleichung einsetzen oder ?

Wäre nach einer Tangente gefragt müsste man a in die erste ableitung einsetzen und dann doch noch b ausrechnen ?

Danke

Philipp

        
Bezug
Tiefpunkte auf einer Kurve .: 2. Ableitung ?
Status: (Antwort) fertig Status 
Datum: 20:00 Di 18.10.2005
Autor: Loddar

Hallo Philipp!


> Die Funktion der Schar : [mm]f(x)=5*x*e^{-a*x^2}[/mm]
> [mm]f'(x)=5*e^{-a*x^2}*(1-2*a*x^2)[/mm]

[ok] Richtig!


> Xtrempunkte hab ich wurzel(0,5/a) -wurzel(0,5/a)

[ok] Auch richtig ... genauer: "mögliche Extremstellen" !


  

> mein Lösungsbuch sagt ,dass wurzel(0,5/a) ein Tiefpunkt ist.

> Ich bekomme immer einen Hochpunt raus.
> Wer hat Recht ?

Es tut mir leid, aber ich stimme Deinem Lösungsbuch zu.

Hast Du denn mal [mm] $x_e [/mm] \ = \ [mm] \bruch{1}{\wurzel{2a}}$ [/mm] in die 2. Ableitung eingesetzt? Wie lautet denn Deine 2. Ableitung [mm] $f_a''(x)$ [/mm] ?


Damit überhaupt Extremwerte entstehen können, muss gelten: $a \ [mm] \red{>} [/mm] \ 0$ !

Dadurch erhalte ich auch einen positiven Wert bei 2. Ableitung an dieser Stelle, also einen Tiefpunkt.


  

> Wenn ich jetzt die Kurve berechnen will , muss ich doch den
> Tiefpunkt nach a auflösen und dann in die originalgleichung
> einsetzen oder ?

[daumenhoch] Ganz genau!

  

> Wäre nach einer Tangente gefragt müsste man a in die erste
> ableitung einsetzen und dann doch noch b ausrechnen ?

[daumenhoch] Auch richtig!


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de