Topologien via Basis,Beweis,O3 < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 15:10 Do 17.09.2015 | Autor: | sissile |
Aufgabe | Beim Beweis zu der Charakterisierung von Topologien via Basisi:
"Sei X eine Menge und [mm] \mathcal{B} [/mm] ein Teilsystem von [mm] 2^x, [/mm] dass (B1) und (B3) erfüllt. Dann ist [mm] \mathcal{O}:= \{\bigcup_{i\in I} B_i| B_i \in \mathcal{B}, I \mbox{beliebig}\} [/mm] eine Topologie auf X."
werden die Topologie-Eigenschaften O1) bis O3) bewiesen. Ich verstehe bei (O3) nicht ganz die Anwendung der Distributivität: |
Hallo!
(O3)
[mm] O_1,..,O_n \in \mathcal{O}
[/mm]
[mm] O_i [/mm] = [mm] \bigcup_{j \in J_i} B_{ij} (B_{ij} \in \mathcal{B})
[/mm]
[mm] \Rightarrow \bigcap_{i=1}^n O_i [/mm] = [mm] \bigcap_{i=1}^n \bigcup_{j \in J_i} B_{ij}=\bigcup_{j_i \in J_i, i=1,..,n} B_{1 j_1} \cap.. \cap B_{n j_n}
[/mm]
Mit (B3) folgt dann, dass [mm] B_{1 j_1} \cap.. \cap B_{n j_n}= \bigcup_{x\in B_{1 j_1} \cap..\cap B_{n j_n}} B_x
[/mm]
Der Schritt den ich nicht verstehe ist:
[mm] \bigcap_{i=1}^n \bigcup_{j \in J_i} B_{ij}=\bigcup_{j_i \in J_i, i=1,..,n} B_{1 j_1} \cap.. \cap B_{n j_n}
[/mm]
Es ist das Distributivgesetz, aber wo kommt plötzlich noch ein weiterer Index her und wie sieht die rechte Seite ausgeschrieben aus?
Die linke Seite: [mm] \bigcap_{i=1}^n \bigcup_{j \in J_i} B_{ij} [/mm] = [mm] \bigcup_{j \in J_1} B_{1j} \cap \bigcup_{j \in J_2} B_{2j} \cap..\cap \bigcup_{j \in J_n} B_{1n} [/mm]
Ich kann z.B.: [mm] J_1 [/mm] ja auch gar nicht durchnummerieren denn ich weiß ja nicht ob die Menge abzählbar ist.
LG,
sissi
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 17:57 Do 17.09.2015 | Autor: | hippias |
> Der Schritt den ich nicht verstehe ist:
> [mm]\bigcap_{i=1}^n \bigcup_{j \in J_i} B_{ij}=\bigcup_{j_i \in J_i, i=1,..,n} B_{1 j_1} \cap.. \cap B_{n j_n}[/mm]
>
> Es ist das Distributivgesetz, aber wo kommt plötzlich noch
> ein weiterer Index her und wie sieht die rechte Seite
> ausgeschrieben aus?
Es soll wohl ausgedrueckt werden, dass ueber die Indices von [mm] $1,\ldots, [/mm] n$ vereinigt wird. Schoen finde ich es auch nicht. Vielleicht so: Die linke Seite der Gleichung duerfte klar sein. Wenn [mm] $x\in \bigcap_{i=1}^n \bigcup_{j \in J_i} B_{ij}$ [/mm] ist, dann gibt es zu jedem [mm] $i\in \{1,\ldots,n\}$ [/mm] ein [mm] $j_{i}\in J_{i}$ [/mm] so, dass [mm] $x\in B_{i,j_{i}}$ [/mm] ist.
Daher wuerde ich eher schreiben, dass [mm] $\bigcap_{i=1}^n \bigcup_{j \in J_i} B_{ij}= \bigcup_{j\in J_{1}\times\ldots \times J_{n}} B_{1,j_{1}}\cap\ldots\cap B_{n,j_{n}}$ [/mm] gilt.
Beantwortet das Deine Frage?
> Die linke Seite: [mm]\bigcap_{i=1}^n \bigcup_{j \in J_i} B_{ij}[/mm]
> = [mm]\bigcup_{j \in J_1} B_{1j} \cap \bigcup_{j \in J_2} B_{2j} \cap..\cap \bigcup_{j \in J_n} B_{1n}[/mm]
> Ich kann z.B.: [mm]J_1[/mm] ja auch gar nicht durchnummerieren denn
> ich weiß ja nicht ob die Menge abzählbar ist.
>
>
> LG,
> sissi
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 21:06 Do 17.09.2015 | Autor: | sissile |
Danke! Diese Darstellung find ich um einiges besser!
Die andere Richtung der Gleichung wäre dann:
Sei [mm] x\in\bigcup_{j=(j_1,..,j_n) \in J_{1}\times\ldots \times J_{n}} B_{1,j_{1}}\cap\ldots\cap B_{n,j_{n}} [/mm] so folgt [mm] \exists [/mm] j [mm] =(j_1,..,j_n) \in J_1 \times [/mm] .. [mm] \times J_n: x\in B_{1j_1} \cap..\cap B_{n j_n} [/mm]
D.h. [mm] \exists [/mm] j [mm] =(j_1,..,j_n) \in J_1 \times [/mm] .. [mm] \times J_n: \forall [/mm] i [mm] \in \{1,..,n\}:x\in B_{i j_i} \Rightarrow [/mm] x [mm] \in$ \bigcap_{i=1}^n \bigcup_{j \in J_i} B_{ij} [/mm]
Ja ich denke mit der Erklärung verstehe ich es um einges besser!
LG,
sissi
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 09:21 Fr 18.09.2015 | Autor: | fred97 |
> Danke! Diese Darstellung find ich um einiges besser!
> Die andere Richtung der Gleichung wäre dann:
> Sei [mm]x\in\bigcup_{j=(j_1,..,j_n) \in J_{1}\times\ldots \times J_{n}} B_{1,j_{1}}\cap\ldots\cap B_{n,j_{n}}[/mm]
> so folgt [mm]\exists[/mm] j [mm]=(j_1,..,j_n) \in J_1 \times[/mm] .. [mm]\times J_n: x\in B_{1j_1} \cap..\cap B_{n j_n}[/mm]
> D.h. [mm]\exists[/mm] j [mm]=(j_1,..,j_n) \in J_1 \times[/mm] .. [mm]\times J_n: \forall[/mm]
> i [mm]\in \{1,..,n\}:x\in B_{i j_i} \Rightarrow[/mm] x [mm]\in$ \bigcap_{i=1}^n \bigcup_{j \in J_i} B_{ij}[/mm]
Das ist O.K.
FRED
>
> Ja ich denke mit der Erklärung verstehe ich es um einges
> besser!
> LG,
> sissi
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 14:56 Fr 18.09.2015 | Autor: | sissile |
danke**
|
|
|
|