www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Topologisch äquivalent
Topologisch äquivalent < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Topologisch äquivalent: Beweis
Status: (Frage) beantwortet Status 
Datum: 19:59 Mi 11.05.2005
Autor: KingMob

Hallo, ich habe hier eine Aussage zu beweisen, und ich komme einfach nicht voran. Kann mir bitte jemand weiterhelfen?

Es ist zu zeigen, dass Metriken d, d' auf einer Menge X topologisch äquivalent sind, genau dann wenn es zu jedem x [mm] \in [/mm] X und jedem [mm] \varepsilon [/mm] > 0 ein [mm] \delta [/mm] > 0 und ein [mm] \delta [/mm] ' > 0 gibt, so dass die beiden folgenden Aussagen gelten:
a) aus d'(x,y) < [mm] \delta [/mm] ' folgt d(x,y) < [mm] \varepsilon [/mm] , [mm] \forall [/mm]  y [mm] \in [/mm] X und
b) aus d(x,z) < [mm] \delta [/mm] folgt d'(x,z) < [mm] \varepsilon [/mm] , [mm] \forall [/mm] z [mm] \in [/mm] X

Vielen Dank im Voraus!

        
Bezug
Topologisch äquivalent: Antwort
Status: (Antwort) fertig Status 
Datum: 21:38 Mi 11.05.2005
Autor: Stefan

Hallo!

Eine Topologie, die von einer Metrik induziert wird, ist die kleinste Topologie, die alle [mm] $\varepsilon$-Bälle [/mm] bezüglich dieser  Metrik enthält. Diese Bälle bilden eine Basis der Topologie. Mit anderen Worten: Eine Menge [mm] $M\subset [/mm] X$ ist genau dann offen, wenn es für alle $x [mm] \in [/mm] M$ ein [mm] $\varepsilon>0$ [/mm] gibt mit

[mm] $B_{\varepsilon}(x) \subset [/mm] M$,

wobei

[mm] $B_{\varepsilon}(x):=\{y \in X\, : \, d(x,y) < \varepsilon\}$. [/mm]

Um zu zeigen, dass zwei Topologien, die von zwei Metriken $d$ und $d'$ induziert werden, gleich sind, genügt es also zu zeigen, dass in jedem [mm] $\varepsilon$-Ball [/mm] bezüglich der Metrik $d$ ein geeigneter [mm] $\delta$-Ball [/mm] bezüglich der Metrik $d'$ enthalten ist und umgekehrt (denn dann ist ja jeder [mm] $\varepsilon$-Ball [/mm] bezüglich der einen Metrik die Vereinigung von Bällen bezüglich der anderen Metrik und damit bezüglich der anderen Topologie offen und umgekehrt).

Das kannst du mit den gegebenen Bedingungen leicht nachweisen.

Versuche es bitte mal. :-)

Viele Grüße
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de