www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Maschinenbau" - Torsionsberechnung Materialmix
Torsionsberechnung Materialmix < Maschinenbau < Ingenieurwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Maschinenbau"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Torsionsberechnung Materialmix: Aufgabe
Status: (Frage) überfällig Status 
Datum: 17:48 Fr 12.12.2014
Autor: MaBear

Aufgabe
Eine Röhre mit Radius R besteht aus einer Aluminiumhaut mit Schubmodul [mm] G_1 [/mm] über einen Winkel [mm] \theta_1 [/mm] sowie aus einer Titanhaut mit Schubmodul [mm] G_2 [/mm] über einen Winkel [mm] (2\pi-\theta_1). [/mm] Die dazugehörigen Wanddicken sind [mm] t_1 [/mm] für Alu und [mm] t_2 [/mm] für Titan. Die maximalen Zugspannungen der Materialien sind [mm] \tau_1 [/mm] (Alu) und [mm] \tau_2 [/mm] (Titan).
Berechne den Wert für [mm] \theta_1 [/mm] so, dass das Gewicht minimal ist und kein Versagen auftritt. Nehme eine dünnwandige Struktur an [mm] (t^2=0 [/mm] usw.). Wie hoch ist die Rate of Twist [mm] \frac{d\theta}{dz} [/mm] in diesem Fall?


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Seit Tagen versuchen wir jeden Ansatz durch.
Egal auf was wir kommen. wir haben keine Idee ausser [mm] \theta_1=0 [/mm] vs [mm] \theta_1=2\pi [/mm] da bei dem gewicht nur constanten überbleiben. Und bei einem Ansatz über [mm] \frac{d\theta}{dz} [/mm] kommt man auch nicht weiter als das man evtl ein [mm] \theta [/mm] rausbekommt, mit dem man aber auch nichts optimieren kann. Es ist wahrscheinlich sehr einfach aber wir haben kommen nicht weiter. Vielleicht kann mir hier ja einer helfen. Vielen Dank :)

q - shear flow
[mm] 2\pi-\theta_1=\theta_2 [/mm]
Angefangen mit dem Gewicht
W = [mm] A1*\rho*L+A2*\rho*L [/mm]
[mm] \frac{dW}{d\theta}=0 [/mm] -> [mm] t_1=\frac{\rho_2t_2}{\rho_1} [/mm]
mit hilfe der formeln: T = 2Aq und [mm] q=t\tau [/mm]
Ebenso wurde der Ansatz probiert über die Rate of Twist.
[mm] \frac{d\theta}{dz}=\frac{1}{2A}\integral_{}^{}\frac{q}{tG}{ds} [/mm] mit welcher wir [mm] \frac{d\theta}{dz} [/mm] für jeden teil des Ringes einzeln berechnen und danach beide gleichsetzen. Also [mm] \frac{d\theta_1}{dz}=\frac{d\theta_2}{dz} [/mm] -> [mm] \theta_1=konstant. [/mm] Schließlich sollte [mm] \frac{d\theta}{dz} [/mm] in einer Struktur immer gleichbleibend sein. Dabei kommt man auf ein [mm] \theta_1. [/mm] Was einen aber insgesamt auch nicht weiter bringt. Was übersehen wir und wie könnte man das noch lösen?
Vielen Dank für eure Hilfe. :)

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
        
Bezug
Torsionsberechnung Materialmix: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:20 Mi 17.12.2014
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Maschinenbau"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de