www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Totale Diff'barkeit
Totale Diff'barkeit < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Totale Diff'barkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:16 Do 14.02.2008
Autor: Walde

Hallo liebes Forum,

es gilt (mal abgekürzt), dass wenn alle partiellen Ableitungen einer Funktion existieren und auch stetig sind (in einem Punkt), die Funktion total diff'bar ist (in dem Punkt).

Dies ist nur eine hinreichende Bedingung,d.h. eine Funktion kann total diff'bar sein, obwohl nicht alle ihrer part. Ableitungen stetig sind.  

Mein Anliegen:

Kann mir jemand  ein Beispiel für eine solche Funktion (am besten von [mm] \IR^2\to\IR^2) [/mm] geben?

LG walde

        
Bezug
Totale Diff'barkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 23:30 Do 14.02.2008
Autor: MatthiasKr

Hallo,
> Hallo liebes Forum,
>  
> es gilt (mal abgekürzt), dass wenn alle partiellen
> Ableitungen einer Funktion existieren und auch stetig sind
> (in einem Punkt), die Funktion total diff'bar ist (in dem
> Punkt).
>  
> Dies ist nur eine hinreichende Bedingung,d.h. eine Funktion
> kann total diff'bar sein, obwohl nicht alle ihrer part.
> Ableitungen stetig sind.  
>
> Mein Anliegen:
>  
> Kann mir jemand  ein Beispiel für eine solche Funktion (am
> besten von [mm]\IR^2\to\IR^2)[/mm] geben?
>  
> LG walde  

gute frage. ich wuerde nach einer antwort im eindimensionalen suchen und diese dann versuchen zu verallgemeinern:

das parade-beispiel fuer eine funktion, die diffbar aber nicht stetig diffbar ist, ist im $R$:

[mm] $f(x)=x^2\sin(\frac1x)$ [/mm]

im mehrdimensionalen kann man es dann entsprechend mal mit

[mm] $f(x)=|x|^2\sin\left(\frac{1}{|x|^2}\right)$ [/mm]

also dem rotationssymmetrischen pendant zur fkt. oben (x in [mm] $R^n$). [/mm]

Habe es jetzt nicht 100%ig zu ende gedacht, aber ich denke, diese funktion ist in 0 diffbar, waehrend die partiellen ableitungen bis in den ursprung hinein oszillieren (wie im 1-dim.)

gruss
matthias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de