www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Totale Diffbarkeit nachweisen
Totale Diffbarkeit nachweisen < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Totale Diffbarkeit nachweisen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:16 Di 19.03.2013
Autor: Schmetterling99

Hallo,
ich habe bald eine mündliche Prüfung und habe dazu noch eine Frage bezüglich der Differenzierbarkeit. Um zu sagen, dass eine Funktion Diffbar ist, muss ich ja nachweisen, dass alle partiellen Ableitungen existieren und diese stetig sind.
Mein Dozent fragt, dann wohl meistens, ob es eine andere Möglichkeit gibt die totale Diffbarkeit nachzuweisen.
Meine Idee wäre vielleicht mit der Definition der totalen Diffbarkeit. Ich wüsste dann aber nicht was man für A in der Definition einsetzen soll, da A ja die Ableitung ist.
[mm] \limes_{x\rightarrow y} \bruch{f(x)-f(y)-A(x-y)}{||x-y||}=0 [/mm]

Lg

        
Bezug
Totale Diffbarkeit nachweisen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:23 Di 19.03.2013
Autor: fred97


> Hallo,
>  ich habe bald eine mündliche Prüfung und habe dazu noch
> eine Frage bezüglich der Differenzierbarkeit. Um zu sagen,
> dass eine Funktion Diffbar ist, muss ich ja nachweisen,
> dass alle partiellen Ableitungen existieren und diese
> stetig sind.

Ja , Existenz und Stetigkeit der part. Ableitungen ziehen Differenzierbarkeit nach sich.


>  Mein Dozent fragt, dann wohl meistens, ob es eine andere
> Möglichkeit gibt die totale Diffbarkeit nachzuweisen.
>  Meine Idee wäre vielleicht mit der Definition der totalen
> Diffbarkeit. Ich wüsste dann aber nicht was man für A in
> der Definition einsetzen soll, da A ja die Ableitung ist.
>  [mm]\limes_{x\rightarrow y} \bruch{f(x)-f(y)-A(x-y)}{||x-y||}=0[/mm]


Für A gibt es nur eine Wahl: die Jacobimatrix von f in y.

FRED

>  
> Lg


Bezug
                
Bezug
Totale Diffbarkeit nachweisen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:29 Di 19.03.2013
Autor: Schmetterling99

Danke für die schnelle Antwort.
Kannst du mir erklären warum die Jacobimatrix in Frage kommt? In die Jacobimatrix schreibt man die partiellen Ableitungen, aber warum das jetzt A sein soll, ist mir unklar.

Lg

Bezug
                        
Bezug
Totale Diffbarkeit nachweisen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:41 Di 19.03.2013
Autor: fred97


> Danke für die schnelle Antwort.
>  Kannst du mir erklären warum die Jacobimatrix in Frage
> kommt? In die Jacobimatrix schreibt man die partiellen
> Ableitungen, aber warum das jetzt A sein soll, ist mir
> unklar.

ich wiederhole aus der Vorlesung ( in Kurzform):

1. f heißt in y (total) differenzierbar, wenn es eine Matrix A gibt mit:


   (*) $ [mm] \limes_{x\rightarrow y} \bruch{f(x)-f(y)-A(x-y)}{||x-y||}=0 [/mm] $

2. ist f in y differenzierbar , so ist f in y partiell differenzierbar, die Matrix A in (*) ist eindeutig bestimmt und es gilt:

    A= Jacobimatrix von f in y.

FRED

>  
> Lg


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de