Totales Differential < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 15:19 Fr 15.04.2016 | Autor: | Reynir |
Hi,
mann kann ja, wie hier im reellen Fall das totale Differential schreiben als Summe der partiellen Ableitungen in einem Punkt mal einer Linearform [mm] $dx^i$. [/mm] Ich habe mich jetzt speziell für den 1-dimensionalen Fall nach der Verbindung gefragt, also für $ dy=f'(x)dx$. Ist da das dx auch eine Linearform. Und zweitens würde mich interessieren, dieses [mm] $dx^i$, [/mm] kann man das noch als Abstand interpretieren, wie man es bei dx und dy im 1-dimensionalen Fall, und wenn ja, wie?
Viele Grüße,
Reynir
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 20:03 Sa 16.04.2016 | Autor: | huddel |
> Hi,
> mann kann ja, wie hier
> im reellen Fall
> das totale Differential schreiben als Summe der partiellen
> Ableitungen in einem Punkt mal einer Linearform [mm]dx^i[/mm].
soweit so gut, schreiben wir das noch einmal aus (ich spare mir an dieser stelle die Definition von f etc.): $(d_pf(v) = ) df(p)(v) = [mm] \partial_vf(p) [/mm] = [mm] \sum_{i=1}^n \frac{\partial f}{\partial x^i}(p)dx^i(v) [/mm] = [mm] \sum_{i=1}^n \frac{\partial f}{\partial x^i}(p)v^i$
[/mm]
Damit bekommen wir eine 1-Form $df [mm] \colon [/mm] U [mm] \subset \mathbb{R}^n \to (\mathbb{R}^n)^\ast$
[/mm]
[mm] ($\ast$ [/mm] bedeutet, dass dies der Dualraum ist)
> Ich habe mich jetzt speziell für den 1-dimensionalen Fall nach
> der Verbindung gefragt, also für [mm]dy=f'(x)dx[/mm]. Ist da das dx
> auch eine Linearform.
Vorsicht: was ist $dy$ und zwei mal $x$ für verschiedene Dinge zu verwenden ist auch gefährlich. Einmal in Korrekt:
[mm] $f\colon U\subset \mathbb{R} \to \mathbb{R}$ [/mm] differenzierbar, $p [mm] \in [/mm] U$, bekommen wir eine 1-Form, wie oben [mm] $df\colon [/mm] U [mm] \to \mathbb{R}^\ast$ [/mm] in die wir nun unseren Punkt $p$ einsetzen $df(p) = f'(p)dx [mm] \in \mathbb{R}^\ast$. [/mm] Sei nun $v [mm] \in \mathbb{R}$, [/mm] dann ist $df(p)(v) = [mm] \partial_vf(p) [/mm] = f'(p)dx(v)$ nun haben wir aber nur eine Komponente, damit ist $dx(v) = v$ und wir bekommen $df(p)(v) = f'(p)v$
Ich denke aus dem Spiel ist klar geworden, dass $dx$ auch eine Linearform ist. in diesem Fall wird die Unterscheidung zwischen [mm] $\mathbb{R}$ [/mm] als Vektorraum und [mm] $\mathbb{R}$ [/mm] als "Skalarraum" wichtig. $dx$ bildet nun einen Vektor aus [mm] $\mathbb{R}$ [/mm] auf ein Skalar aus [mm] $\mathbb{R}$ [/mm] ab. Sieht am ende genau gleich aus, bedeutet nur was anderes
> Und zweitens würde mich interessieren, dieses [mm]dx^i[/mm], kann man das noch als Abstand
> interpretieren, wie man es bei dx und dy im 1-dimensionalen
> Fall, und wenn ja, wie?
Da weiß ich nicht ganz wie du das meinst. Wie kann man $dx$ als Abstand interpretieren? Wenn du damit die Änderung in
$x$-Richtung meinst, dann meint [mm] $dx^i$ [/mm] die Änderung in [mm] $x^i$-Richtung, [/mm] ja.
> Viele Grüße,
> Reynir
Viele Grüße,
Huddel
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 19:28 So 17.04.2016 | Autor: | Reynir |
Hi,
vielen Dank für deine Antwort. Ich meinte auch die Änderung in x-Richtung. Kann man jetzt sagen, dass man das dx (die Linearform) als Änderung in x-Richtung interpretieren kann, weil ich ja ein beliebiges v aus den reellen Zahlen einsetzen kann und dafür dann einen "Änderungswert" erhalte?
Wo kann ich die Definition von Skalarraum nachlesen, das sagt mir so nichts? Meinst du vielleicht einen Skalarproduktraum?
Viele Grüße,
Reynir
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 19:40 So 17.04.2016 | Autor: | fred97 |
> Hi,
> vielen Dank für deine Antwort. Ich meinte auch die
> Änderung in x-Richtung. Kann man jetzt sagen, dass man das
> dx (die Linearform) als Änderung in x-Richtung
> interpretieren kann, weil ich ja ein beliebiges v aus den
> reellen Zahlen einsetzen kann und dafür dann einen
> "Änderungswert" erhalte?
ja,das kommt hin
> Wo kann ich die Definition von Skalarraum nachlesen, das
> sagt mir so nichts? Meinst du vielleicht einen
> Skalarproduktraum?
Nein, Hud del meint mit "Skalarraum" den Körper der reellen zahlen, [mm] \IR [/mm] ist ein [mm] \IR [/mm] - Vektorraum, [mm] \IR [/mm] kommt in 2 Bedeutungen vor.
fred
> Viele Grüße,
> Reynir
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 18:22 Di 19.04.2016 | Autor: | Reynir |
Vielen Dank euch beiden.
|
|
|
|