www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Totales Differential
Totales Differential < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Totales Differential: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:13 Sa 02.10.2004
Autor: Betonkopf

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo!

Ich sitze grad an einer Aufgabe und komme nicht ganz weiter:

Eine Produktionsfunktion sei gegeben durch:     z = f(x,y) =  [mm] \wurzel{xy} [/mm]
Berechnen Sie mit Hilfe des totalen Differentials näherungsweise die Änderung der Ausbringungsmenge z, falls der Einsatzfaktor x von 100 auf 102 und y von 50 auf 51 Mengeneinheiten erhöht wird.


Ein ähnliche Aufgabe habe ich hier im Forum schonmal gefunden, aber der Beitrag hat mir leider nicht weiter geholfen.

Mein Lösungsansatz:

f(x,y) =  [mm] x^{0.5} [/mm] * [mm] y^{0.5} [/mm]

f'(x) = [mm] 0,5x^{-0.5} [/mm] *  [mm] y^{0.5} [/mm]
f'(y) = [mm] 0,5x^{0.5} [/mm] *  [mm] y^{-0.5} [/mm]

df = f'(x)*2 + f'(y)*1
    = (0,5 * [mm] 2^{-0.5} [/mm] * [mm] 1^{0.5})*2 [/mm] + (0,5 * [mm] 2^{0.5} [/mm] * [mm] 1^{-0.5})*1 [/mm]

Ist das bis hierhin richtig?
Muss ich jetzt nur noch das ganze ausrechnen und dann habe ich das z?
Oder liege ich vielleicht schon totaaal verkehrt?

Ich hoffe, mir kann jemand weiterhelfen
schöne Grüße

Betonkopf

        
Bezug
Totales Differential: Antwort
Status: (Antwort) fertig Status 
Datum: 15:34 Sa 02.10.2004
Autor: Marc

Hallo Betonkopf!

> Eine Produktionsfunktion sei gegeben durch:     z = f(x,y)
> =  [mm]\wurzel{xy} [/mm]
>  Berechnen Sie mit Hilfe des totalen Differentials
> näherungsweise die Änderung der Ausbringungsmenge z, falls
> der Einsatzfaktor x von 100 auf 102 und y von 50 auf 51
> Mengeneinheiten erhöht wird.
>  
>
> Ein ähnliche Aufgabe habe ich hier im Forum schonmal
> gefunden, aber der Beitrag hat mir leider nicht weiter
> geholfen.
>  
> Mein Lösungsansatz:
>  
> f(x,y) =  [mm]x^{0.5}[/mm] * [mm]y^{0.5} [/mm]
>  
> f'(x) = [mm]0,5x^{-0.5}[/mm] *  [mm]y^{0.5} [/mm]
>  f'(y) = [mm]0,5x^{0.5}[/mm] *  [mm]y^{-0.5} [/mm]
>  
> df = f'(x)*2 + f'(y)*1
>      = (0,5 * [mm]2^{-0.5}[/mm] * [mm]1^{0.5})*2[/mm] + (0,5 * [mm]2^{0.5}[/mm] *
> [mm]1^{-0.5})*1 [/mm]
>  
> Ist das bis hierhin richtig?

In deine Rechnung ist ja gar nicht eingeflossen, dass sich die Einsatzfaktoren ausgehend von 100 bzw. von 50 ändern.
Das würde mich an deiner Stelle etwas skeptisch machen :-)

Das totale Differential wird immer nur zu einer bestimmten Stelle bzw. an einem bestimmten Punkt gebildet, hier [mm] $(x_0,y_0)=(100,50)$. [/mm]

$f(x,y) = [mm] x^{0.5}* y^{0.5}$ [/mm]

Partielle Ableitungen:
[mm] $\bruch{\partial f}{\partial x}(x_0,y_0)=0,5x_0^{-0.5}*y_0^{0.5}$ [/mm]
[mm] $\bruch{\partial f}{\partial y}(x_0,y_0)=0,5x_0^{0.5}*y_0^{-0.5}$ [/mm]

Am konkreten Punkt ausgewertet:
[mm] $\bruch{\partial f}{\partial x}(100,50)=0,5*100^{-0.5}*50^{0.5}=0,05*\wurzel{50}\approx\ldots$ [/mm]
[mm] $\bruch{\partial f}{\partial y}(100,50)=0,5*100^{0.5}*50^{-0.5}=\bruch{5}{\wurzel{50}}\approx\ldots$ [/mm]

Für das totale Differential ergibt sich:

[mm] $Df(x_0,y_0)$ [/mm]
[mm] $=\bruch{\partial f}{\partial x}(x_0,y_0)*dx+\bruch{\partial f}{\partial y}(x_0,y_0)*dy$ [/mm]

Eingesetzt:

[mm] $=\bruch{\partial f}{\partial x}(100,50)*2+\bruch{\partial f}{\partial y}(100,50)*1$ [/mm]
[mm] $=0,05*\wurzel{50}*2+\bruch{5}{\wurzel{50}}*1$ [/mm]
[mm] $\approx\ldots$ [/mm]

>  Muss ich jetzt nur noch das ganze ausrechnen und dann habe
> ich das z?
>  Oder liege ich vielleicht schon totaaal verkehrt?

So verkehrt war es ja nicht, du mußt nur daran denken, dass das totale Differential an einer bestimmten Stelle gebildet wird.
  

> Ich hoffe, mir kann jemand weiterhelfen

Ich hoffe, ich konnte dir weiterhelfen :-)

Viele Grüße,
Marc

Bezug
                
Bezug
Totales Differential: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:56 Sa 02.10.2004
Autor: Betonkopf

aaaaaachso - stimmt,   Vielen Dank!!!

...da habe ich wohl nur von der Tapete bis zur Wand gedacht ;)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de