www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Totales Differenzial
Totales Differenzial < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Totales Differenzial: Korrektur
Status: (Frage) beantwortet Status 
Datum: 11:04 Do 21.06.2012
Autor: Robse

Aufgabe
Gegeben seien die Funktionen f,g: [mm] \IR^2 \to \IR^3 [/mm] mit

f(x,y)= [mm] \vektor{2x+y^3 \\ xy \\ -2} [/mm] und g(x,y)= [mm] \vektor{y \\ x^2+y^2 \\ 3x} [/mm]

Bestimmen Sie die Ableitung von <f,g> und f x g.


Guten Tag,
ich bin mir mit dieser Aufgabe nicht wirklich sicher, es wäre, nett wenn dort mal jemand drüber gucken könnte, und mit vllt erklärt was ich falsch gemacht habe. Schonmal danke im vorraus.

[mm] =(2x+y^3)y [/mm] + [mm] (x^2+y^2)xy [/mm] + 3x(-2) = [mm] y^4+2xy+x^3y+xy^3-6x [/mm]

[mm] _x=2y+3x^2y+y^3-6 [/mm]
[mm] _y=4y^3+2x+x^3+3xy^2 [/mm]


(f x g)= [mm] \vektor{2x+y^3 \\ xy \\ -2} [/mm] x [mm] \vektor{y \\ x^2+y^2 \\ 3x} [/mm] = [mm] \vektor{xy(3x) + 2(x^2+y^2) \\ -2y - 2x+y^3(3x) \\ (2x+y^3)(x^2+y^2) - xy(y)} [/mm]

(f x [mm] g)_x= \vektor{6xy+4x \\ -12x+3y^3 \\ 6x^2+2y^3x+y^2} [/mm]

(f x [mm] g)_y= \vektor{3x^2+4y \\ -2+9xy^2 \\ 5y^4+3x^2y^2+2xy} [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Totales Differenzial: Antwort
Status: (Antwort) fertig Status 
Datum: 19:56 Do 21.06.2012
Autor: notinX

Hallo,

> Gegeben seien die Funktionen f,g: [mm]\IR^2 \to \IR^3[/mm] mit
>  
> f(x,y)= [mm]\vektor{2x+y^3 \\ xy \\ -2}[/mm] und g(x,y)= [mm]\vektor{y \\ x^2+y^2 \\ 3x}[/mm]
>  
> Bestimmen Sie die Ableitung von <f,g> und f x g.

ist das die exakte Aufgabenstellung? Bei Funktionen mit mehreren Veränderlichen gibt es nicht 'die' Ableitung. Es gibt verschiedene Ableitungsbegriffe.

>  Guten Tag,
> ich bin mir mit dieser Aufgabe nicht wirklich sicher, es
> wäre, nett wenn dort mal jemand drüber gucken könnte,
> und mit vllt erklärt was ich falsch gemacht habe. Schonmal
> danke im vorraus.
>  
> [mm]=(2x+y^3)y[/mm] + [mm](x^2+y^2)xy[/mm] + 3x(-2) =
> [mm]y^4+2xy+x^3y+xy^3-6x[/mm]
>  
> [mm]_x=2y+3x^2y+y^3-6[/mm]
>  [mm]_y=4y^3+2x+x^3+3xy^2[/mm]

Das sind die partiellen Ableitungen, die stimmen.

>  
>
> (f x g)= [mm]\vektor{2x+y^3 \\ xy \\ -2}[/mm] x [mm]\vektor{y \\ x^2+y^2 \\ 3x}[/mm]
> = [mm]\vektor{xy(3x) + 2(x^2+y^2) \\ -2y - 2x+y^3(3x) \\ (2x+y^3)(x^2+y^2) - xy(y)}[/mm]

hier fehlt eine Klammer:
[mm] $=\left(\begin{array}{c} xy(3x)+2(x^{2}+y^{2})\\ -2y-{\color{red}({\color{black}2x+y^{3}})}(3x)\\ (2x+y^{3})(x^{2}+y^{2})-xy(y) \end{array}\right)$ [/mm]


>  
> (f x [mm]g)_x= \vektor{6xy+4x \\ -12x+3y^3 \\ 6x^2+2y^3x+y^2}[/mm]

hier ist ein Vorzeichenfehler:
[mm] $=\left(\begin{array}{c} 6xy+4x\\ -12x{\color{red}-}3y^{3}\\ 6x^2+2y^3x+y^2 \end{array}\right)$ [/mm]

>  
> (f x [mm]g)_y= \vektor{3x^2+4y \\ -2+9xy^2 \\ 5y^4+3x^2y^2+2xy}[/mm]

hier auch:
[mm] $=\left(\begin{array}{c} 3x^{2}+4y\\ -2{\color{red}-}9xy^{2}\\ 5y^{4}+3x^{2}y^{2}+2xy \end{array}\right)$ [/mm]

Bei Vektorwertigen Funktionen würde ich unter Ableitung die Jacobi-Matrix verstehen.

>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

Gruß,

notinX

Bezug
                
Bezug
Totales Differenzial: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:33 Do 21.06.2012
Autor: Robse

Danke schön für die Mühe,
meine üblichen Fehler: Vorzeichen und Klammern....

An die Option mit der Jacobi-Matrix habe ich noch gar nicht gedacht. Das wäre doch dann aber auch nur:

[mm] J_{(f x g)}(x,y)= \pmat{6xy+4x & 3x^2+4y\\ -12x-3y^3 & -2-9xy^2 \\6x^2+2y^3x+y^2 & 5y^4+3x^2y^2+2xy} [/mm]

oder erinnere ich mich da falsch?

Bezug
                        
Bezug
Totales Differenzial: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:27 Do 21.06.2012
Autor: notinX


> Danke schön für die Mühe,
>  meine üblichen Fehler: Vorzeichen und Klammern....
>  
> An die Option mit der Jacobi-Matrix habe ich noch gar nicht
> gedacht. Das wäre doch dann aber auch nur:
>  
> [mm]J_{(f x g)}(x,y)= \pmat{6xy+4x & 3x^2+4y\\ -12x-3y^3 & -2-9xy^2 \\6x^2+2y^3x+y^2 & 5y^4+3x^2y^2+2xy}[/mm]
>  
> oder erinnere ich mich da falsch?

Nein, tust Du nicht.
Kleiner Tipp: Nachschauen ist manchmal ergiebiger als erinnern.
Noch ein Tipp: Wenn Du eine Antwort erwartest solltest Du eine Frage, keine Mitteilung erstellen.

Gruß,

notinX

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de