www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - Trägheitmoment Zylinder
Trägheitmoment Zylinder < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Trägheitmoment Zylinder: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 14:02 Fr 15.07.2011
Autor: vysogota

Aufgabe
Ein homogener Kreiszylinder (Dichte[mm] \rho [/mm]= const.) habe den Radius a und Höhe h. Berechnen Sie dessen Trägheitsmoment J bezüglich einer zur Zylinderachse senkrechten Geraden durch den Mittelpunkt des Zylinders nach der Formel[mm] J=\integral \integral_{B} \integral {p^2*\rho db}[/mm]. Hierbei ist B der Zylinder-Bereich und p=p(x,y,z) der Abstand des Punktes P(x;y;z)[mm] x\in\B [/mm]von der Geraden.





Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo, das ist eine Übungsaufgabe, die ich für die Prüfungsvorbereitung rechne. Ich hab teilweise den Lösungsweg, den ich aber nicht nachvollziehen kann, was warum gemacht wurde.

Der Ansatz geht so:

Abstand p von der x-Achse: [mm]p=\wurzel{y^2+z^2}, p^2=y^2+z^2 [/mm]

Nun wurde der Bereich geteilt, Warum? Woher weiß ich sowas, bevor ich anfange zu rechnen?
Bevor ich auf die Lösung geschaut habe, habe ich die Funktion [mm] p^2*[/mm] [mm]\rho[/mm] in Zylinderkoordinaten ausgedrückt, und dann in den Grenzen -h/2 bis h/2, 0 bis a und 0 bis 2pi integriert.

[mm] J=\rho \integral_{-h/2}^{h/2} \integral_{0}^{a} \integral_{0}^{2\pi}{r^3 (\sin \phi)^2 z^2 dzdrd\phi}[/mm]

Naja, hab das so gerechnet, kam aber Quatsch raus. War der Ansatz falsch, oder hab ich mich zwischenzeitlich verrechnet? Spielt die Integrationsreihenfolge eine Rolle? Sollte ja eigentlich nicht, da in den Grenzen nur Konstanten stehen.

Die Lösung ging so:

B=[mm] (x,y)\in\S [/mm], -h/2[mm]\le[/mm]z[mm]\le[/mm]h/2
S=(x,y), [mm] y^2+z^2[/mm] [mm]\le[/mm][mm] a^2 [/mm]

[mm]J=\rho \integral_{-h/2}^{h/2} \integral\integral_{S}{y^2+z^2 dsdz}[/mm]

Dann das Integral nochmal teilen im z aus dem Bereich S zu entfernen.

[mm] J= \rho \integral_{-h/2}^{h/2}{dz} \integral\integral_{S}{y^2 ds} + \rho \integral_{-h/2}^{h/2} z^2 dx} \integral\integral_{S}{ ds}[/mm]

Anschließend alles mit dz normal integriert. Dann erst in Polarkoordinaten umgewandelt und in den Grenzen, wie ich sie auch in meinem Ansatz hatte integriert.

Wird der Bereich immer geteilt wenn es eine kartesische und eine polare Komponente gibt?
Aber z ist doch auch bei der Umrechnung in Zylinderkoordinaten =z

Ich verstehs nicht, hat jemand eine Erklärung für mich?


        
Bezug
Trägheitmoment Zylinder: erledigt
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:38 Fr 15.07.2011
Autor: vysogota

Sorry Leute, hab meinen Fehler gerade gesehen.
Es müsste heißen:


[mm] J=\rho \integral_{-h/2}^{h/2} \integral_{0}^{a} \integral_{0}^{2\pi}{r^3 (\sin \phi)^2 +rz^2 dzdrd\phi}[/mm]

Dann wirds zwar etwas aufwändiger, da 2 mal partielle integriert werden muss, aber so sollte man zum richtigen Ergebnis kommen, oder?

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de