Trägheitsmom./Dichteverteilung < HochschulPhysik < Physik < Naturwiss. < Vorhilfe
|
Hallo zusammen.
Ich soll für eine Physikaufgabe das Trägheitsmoment [mm] I_s [/mm] eines Zylinders mit Masse M und Radius R bei gegebener Massendichteverteilung, mittels der Trägheitsmomente [mm] dI_s [/mm] seiner Hohlzylinder, herleiten.
Dafür habe ich mit dem allgemeinen Ausdruck
[mm] I_s [/mm] = [mm] \integral_{}^{M}{r^{2}dm} [/mm] = [mm] \integral_{}^{V}{\varrho(r)\ r^{2}dV} [/mm]
begonnen und diesen für die einzelnen Zylinderschichten genutzt:
[mm] dI_s [/mm] = [mm] \varrho(r)\ r^{2}dV [/mm] = [mm] 2\pi h\varrho(r) r^{3}dr [/mm] = [mm] 2\pi \varrho_0 \bruch{h}{R}r^{3}dr \qquad [/mm] mit [mm] \varrho(r) [/mm] = [mm] \bruch{\varrho_0r}{R}
[/mm]
Das gesamte Trägheitsmoment ist dann nur noch das Integral über den gesamte Radius R.
[mm] I_s [/mm] = [mm] \integral_{0}^{R}{2\pi \varrho_0 \bruch{h}{R}r^3 dr} [/mm] = [mm] 2\pi \varrho_0 \bruch{h}{R}\integral_{0}^{R}{r^3 dr} [/mm] = [mm] \bruch{1}{2} \pi \varrho_0hR^{3} [/mm] = [mm] \bruch{1}{2}RV_Z \varrho_0 \qquad [/mm] mit [mm] \pi R^{2}h [/mm] = [mm] V_Z [/mm] (Zylindervolumen)
= [mm] \bruch{1}{2}RM \qquad [/mm] mit [mm] V_Z \cdot \varrho_0 [/mm] = $M$ (Zylindermasse)
Das ist jedoch die Gleichung des Trägheitsmomentes eines Vollzylinders kontinuierlicher Dichteverteilung oder irre ich mich da?
Hab ich unterwegs nen Fehler gemacht?
Für Tips wär ich dankbar.
MfG -Endo
---------------------------------------------------------------------------
EDIT Ich glaub ich hab meinen Fehler gefunden:
[mm] dI_s [/mm] = [mm] \varrho(r)\;r^{2}dV [/mm] = [mm] 2\;\pi\;h\;\varrho(r)\;r^{3}dr [/mm] = [mm] 2\;\pi\;\varrho_0\;\bruch{h}{R}\;r^{4}dr \qquad [/mm] mit [mm] \varrho(r) [/mm] = [mm] \bruch{\varrho_0r}{R}
[/mm]
[mm] \Rightarrow
[/mm]
[mm] I_s [/mm] = [mm] \integral_{0}^{R}{2\pi \varrho_0 \bruch{h}{R}r^{4}dr} [/mm] = [mm] 2\pi \varrho_0 \bruch{h}{R}\integral_{0}^{R}{r^{4}dr} [/mm] = [mm] \bruch{2}{5} \pi \varrho_0hR^{4} [/mm] = [mm] \bruch{2}{5}V_Z\;\varrho_0\;R^{2} \qquad [/mm] mit [mm] \pi\;R^{2}h [/mm] = [mm] V_Z [/mm] (Zylindervolumen)
= [mm] \bruch{2}{5}M\;R^{2} \qquad [/mm] mit [mm] V_Z \cdot \varrho_0 [/mm] = $M$ (Zylindermasse)
Kommt das hin? O.o
|
|
|
|
Hallo!
bei dem Edit hättest du etwas genauer schreiben können, was dir aufgefallen ist. Es ist richtig, nach dem Einsetzen von [mm] \varrho(r) [/mm] hast du da ein [mm] r^4 [/mm] stehen.
Aber ich sehe am Ende noch was anderes:
Die Masse des Zylinders ist nicht einfach [mm] \varrho_0*V [/mm] . Die Dichte ist nur ganz außen, am Zylindermantel [mm] \varrho_0 [/mm] , im Inneren ist sie um den Faktor [mm] \frac{r}{R} [/mm] kleiner. Demnach ist der Zylinder leichter. Um an die Masse zu kommen, mußt du [mm] m=\int\varrho(r)\,dV [/mm] berechnen.
|
|
|
|
|
Mhm, da war mein Fragezeichen vor der Stirn.
Es ist ja soweit klar, dass die Masse vom Radius r abhängt, aber ist das relevant für die Gesamtmasse des Zylinders?
Oder sollte ich $ [mm] V_Z\;\cdot\varrho_0\ [/mm] =\ [mm] M_0 [/mm] $ als Masse maximaler Dichte deklarieren?
$M$ = [mm] \integral_{V}^{}{\bruch{\varrho_0\,r}{R}\,dV} [/mm] = [mm] \bruch{\varrho_o}{R}\integral_{V}^{}{r\,dV} [/mm] = [mm] \bruch{\varrho_0}{R}\integral_{0}^{R}{2\,\pi\,h\,r^{2}\,dr} [/mm] = [mm] \bruch{2}{3}\,\pi\,h\,\varrho_0\,R^{2} [/mm] = [mm] \bruch{2}{3}\,V_Z\,\varrho_0 [/mm] = [mm] \bruch{2}{3}\,M_0
[/mm]
[mm] \gdw\ \bruch{3}{2}\;M\,=\,M_o
[/mm]
Die Gesamtmasse ist also [mm] \bruch{2}{3} [/mm] der Masse [mm] $M_0$ [/mm] (Masse maximaler Dichte [mm] $\varrho\,(R)$, [/mm] wenn diese homogen verteilt wäre).
Also ist $ [mm] I_s\, =\, \bruch{2}{5}\;M_0\;R^{2}\, =\, \bruch{2}{5}\;\left(\bruch{3}{2}\;M\right)R^{2}\,=\,\bruch{3}{5}\;M\;R^{2} [/mm] $
Ich hab sonst keine Ahnung wie ich das Integral lösen sollte. Eigentlich habe ich es ja bereits in meiner Gleichung für das Trägheitsmoment berechnet.
Weiterführend soll dieser Zylinder eine schiefe Ebene herunter rollen.
Es ist dann das Trägheitsmoment in Bezug zur Kontaktlinie zwischen Zylinder und Ebene anzugeben.
[mm] I_p\,=\,I_s\,+\,M\,d^{2}\,=\,\bruch{3}{5}\,M\,R^2\,+\,M\,R^2\,=\,\bruch{8}{5}\,M\,R^2 \qquad [/mm] (Steiner'scher Satz)
Ergibt das Sinn oder bastel ich mir irgendwas zusammen?
Herrje, ist Zeit für ne Pause, ich seh schon den Wald vor lauter Bäumen nicht mehr...
|
|
|
|
|
Hallo!
Das mit der max. Dichte würde ich sein lassen, das ergibt irgendwo keinen Sinn. In dem Fall hier kannst du ablesen, daß [mm] \varrho_0 [/mm] die Dichte am Mantel ist, also deine max. Dichte. Das muß ja nicht unbedingt so sein, möglich wäre auch [mm] \varrho_0=C*r^2, [/mm] da ist das nicht mehr so klar.
Du hast ja jetzt die Masse berechnet, es ist $M= [mm] \bruch{2}{3}\,V_Z\,\varrho_0$.
[/mm]
Und vorher hattest du [mm] $I_s=\bruch{2}{5}V_Z\;\varrho_0\;R^{2} [/mm] $
Hier klammerst du die Masse einfach aus:
[mm] $I_s=\bruch{2}{5}\frac{3}{2}\underbrace{\left(\frac{2}{3}V_Z\;\varrho_0\right)}_{=M}\;R^{2}=\frac{3}{5}MR^2 [/mm] $
(Naja, deine Integrale habe ich nicht weiter nachgerechnet, aber rechnen scheint ja kein Problem für dich zu sein.)
Das mit Steiner ist auch völlig korrekt!
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 18:21 Mo 13.01.2014 | Autor: | Endorphin |
Ja klasse, dann hab ich's!
Vielen Dank!
|
|
|
|