www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - Trajektorie
Trajektorie < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Trajektorie: Idee/ Erklärung
Status: (Frage) beantwortet Status 
Datum: 09:37 Do 15.11.2012
Autor: Bling

Aufgabe
Aufgabe2 (Phasenportrait, Stabilität)

Betrachten Sie das System

[mm] x(t)'=\alpha*x(t)+(1-\alpha)*y(t) [/mm]
[mm] y(t)'=(\alpha-1)*x(t)+\alpha*y(t) [/mm]

wobei [mm] \alpha [/mm] ein reeller Parameter ist. Eine Trajektorie ist eine parametrisierte Kurve [mm] \vec{r}(t)=(x(t),y(t)) [/mm] in der Ebene, so dass x(t), y(t) das System erfüllen.

a) Skizzieren Sie einige Trajektorien für [mm] \alpha=-1,0,1,2 [/mm] (versehen mit Pfeilspitzen, um die Durchlaufrichtung anzuzeigen).

b) Bestimmen Sie die Bereiche für [mm] \alpha, [/mm] für die
   i) [mm] \limes_{n\rightarrow\infty}|\vec{r}(t)|=0, [/mm]
   ii) [mm] |\vec{r}(t)| [/mm] beschränkt,
   iii) [mm] \limes_{n\rightarrow\infty}|\vec{r}(t)|=\infty [/mm]
ist. Im Fall i) heisst der Gleichgewichtspunkt (0,0) stabil, im Fall ii) asymptotisch stabil und im Fall iii) instabil.

Also, wir haben im Unterricht ganz einfach das Lösen von gewöhnlichen DGL's 2. und höherer Ordnung behandelt. Auch haben wir Systeme von DGL kurz betrachtet. Nun erhalte ich ein solches Aufgabenblatt und hab keinen Plan was da von mir verlangt wird. In meinen Unterlage ist nirgens von Trajektorie, asymptotischer (In-)Stabilität oder ähnlichem die Rede.

Ich hoffe mir kann hier jemand weiterhelfen.

Danke

        
Bezug
Trajektorie: Antwort
Status: (Antwort) fertig Status 
Datum: 12:18 Do 15.11.2012
Autor: leduart

Hallo
setze mal eines der [mm] \alpha [/mm] ein und zeichne das Richtungsfeld in der x-y Ebene, dann die Trajektorie
als bonbon das Bild für [mm] \alpha=-1 [/mm]
[Dateianhang nicht öffentlich]
gruss leduart

Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Bezug
                
Bezug
Trajektorie: Erklärung
Status: (Frage) beantwortet Status 
Datum: 10:02 Do 22.11.2012
Autor: Bling

Hi,
Danke für deine Antwort. Jedoch bringt die micht nicht wirklich weiter, denn ich weiss weder was man unter einem Richtungsfeld versteht noch unter Trajektorie...

Ich setze also mal -1 für [mm] \alpha [/mm] ein:

x'=-x+2*y
y'=-2*x-y,

zeichne ein x-y-Koordinaten-System, und weiter? Wie komme ich auf diese kleinen Striche bzw. auf diese geschwungenen Linien? Was sagen die aus?

Wäre äusserst dankbar, wenn du mir da eine etwas genäuere Erklährung abgeben könntest.

Gruss D

Bezug
                        
Bezug
Trajektorie: Antwort
Status: (Antwort) fertig Status 
Datum: 14:14 Do 22.11.2012
Autor: leduart

Hallo
eine Trajektorie ist eine Lösungskurve von einem anfangswert aus.
in den x-y Szstem yeichnest du als kleine Pfeile die Richtungen y'/x' ein. Am besten für ein festes x nacheinander einige y einsetzen, dann das nächste x. orientier dich an meinem Bild. dann kann man an einem Punkt anfangen und in richtung der Pfeile jeweils zum nächsten kommen, und so eine Trajektorie zeichnen.
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de