www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - Traktrix
Traktrix < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Traktrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:09 Sa 17.12.2022
Autor: Martinius

Aufgabe
Murray R. Spiegel / applied differential equations / 3. edition, 1981, p. 131 No. 3

A man initially at O [Koordinatenursprung] walks along the straight shore Ox of a lake towing a rowboat, initially at A [auf der positiven y-Achse], by means of a rope of length a, which is always held taught. Show that the boat moves in a path (called a traktrix) with parametric equations

[mm] $x\;=\;a\;ln \left[\;cot\; \frac{\theta}{2}\; -\;cos\; \theta \;\right]$, $y\;=\;a\;sin\;\theta$ [/mm]

Hallo liebe Leute,

ich frage mich ob da ein Druckfehler im Buch ist, weil ich ein leicht anderes Ergebnis habe:

Differentialgleichung:   [mm] $y'\;=\;-\; \frac{y}{\wurzel{a^2-y^2}}$ [/mm]


Lösung mit Formelsammlung:    [mm] $x(y)\;=\;a*ln \left|\frac{a+\wurzel{a^2-y^2}}{y} \right|\;-\;\sqrt{a^2-y^2}$ [/mm]  


wobei nun:   [mm] $y(\theta)\;=\;a*sin(\theta)$ [/mm]


[mm] $x(\theta)\;=\;a*ln\;\left| \;\frac{a+\wurzel{a^2-a^2*sin^2(\theta)}}{a*sin(\theta)}\;\right| \;-\;\wurzel{a^2-a^2*sin^2(\theta)}$ [/mm]


[mm] $x(\theta)\;=\;a*ln\;\left|\; \frac{1+cos(\theta)}{sin(\theta)} \;\right| \;-\;a*cos(\theta)$ [/mm]


[mm] $x(\theta)\;=\;a*ln\;\left|\; cot\;\frac{\theta}{2} \;\right| \;-\;a*cos(\theta)\;=\;a* \left( ln\;\left|\; cot \;\frac{\theta}{2} \;\right| \;-\;cos(\theta) \right)$ [/mm]


Besten Dank fürs drüberschauen.

LG, Martinius

        
Bezug
Traktrix: diverse Parametrisierungen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:11 So 18.12.2022
Autor: Al-Chwarizmi

hallo Martinius

Für die Traktrix gibt es eine Fülle unterschiedlicher Parametrisierungen. Einige werden da gezeigt:

https://mathe-cd.de/DEMO-CD/5_Studium/54_Algebraische%20Kurven/54110%20Traktrix.pdf


LG ,   Al-Chw.

Bezug
                
Bezug
Traktrix: Dank!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:47 So 18.12.2022
Autor: Martinius

Hallo Al,

Dank Dir für den Link!

LG, Martinius

Bezug
        
Bezug
Traktrix: Antwort
Status: (Antwort) fertig Status 
Datum: 23:13 Di 20.12.2022
Autor: HJKweseleit


> Murray R. Spiegel / applied differential equations / 3.
> edition, 1981, p. 131 No. 3
>  
> A man initially at O [Koordinatenursprung] walks along the
> straight shore Ox of a lake towing a rowboat, initially at
> A [auf der positiven y-Achse], by means of a rope of length
> a, which is always held taught. Show that the boat moves in
> a path (called a traktrix) with parametric equations
>  
> [mm]x\;=\;a\;ln \left[\;cot\; \frac{\theta}{2}\; -\;cos\; \theta \;\right][/mm],
>   [mm]y\;=\;a\;sin\;\theta[/mm]
>  Hallo liebe Leute,
>  
> ich frage mich ob da ein Druckfehler im Buch ist, weil ich
> ein leicht anderes Ergebnis habe:



Ja. Die erste Klammer gehört vor und nicht hinter ln. Deine folgende Rechnung ist richtig.




>  
> Differentialgleichung:   [mm]y'\;=\;-\; \frac{y}{\wurzel{a^2-y^2}}[/mm]
>  
>
> Lösung mit Formelsammlung:    [mm]x(y)\;=\;a*ln \left|\frac{a+\wurzel{a^2-y^2}}{y} \right|\;-\;\sqrt{a^2-y^2}[/mm]
>  
>
>
> wobei nun:   [mm]y(\theta)\;=\;a*sin(\theta)[/mm]
>  
>
> [mm]x(\theta)\;=\;a*ln\;\left| \;\frac{a+\wurzel{a^2-a^2*sin^2(\theta)}}{a*sin(\theta)}\;\right| \;-\;\wurzel{a^2-a^2*sin^2(\theta)}[/mm]
>  
>
> [mm]x(\theta)\;=\;a*ln\;\left|\; \frac{1+cos(\theta)}{sin(\theta)} \;\right| \;-\;a*cos(\theta)[/mm]
>  
>
> [mm]x(\theta)\;=\;a*ln\;\left|\; cot\;\frac{\theta}{2} \;\right| \;-\;a*cos(\theta)\;=\;a* \left( ln\;\left|\; cot \;\frac{\theta}{2} \;\right| \;-\;cos(\theta) \right)[/mm]
>  
>
> Besten Dank fürs drüberschauen.
>  
> LG, Martinius


Bezug
                
Bezug
Traktrix: Dank!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:58 Mi 21.12.2022
Autor: Martinius

Hallo HJKweseleit,

ja, das war meine eigentliche Frage. Habe vielen Dank für Deine Antwort!

LG, Martinius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de