www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integrationstheorie" - Transformation Integral
Transformation Integral < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Transformation Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:49 Do 29.11.2012
Autor: sissile

Aufgabe
Man berechne
[mm] \int_K x^2 [/mm] y d(x,y),
K= [mm] \{ (x,y) \in \IR^2 : x^2 \le y^ \le 3x^2 , 2 \le xy \le 3 \} [/mm]
und den Flächeninhalt von K.
Hinweis: Transformation auf ein Rechteck

Hallo,
ich verstehe nicht wie eine Transformation auf ein Rechteck aussehen soll...Sind Polar-, Kugel-, oder Zylinderkoordianten gemeint? Oder was ganz anderes.
Ich verstehe den Hinweis nicht.

Liebe Grüße

        
Bezug
Transformation Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 15:27 Do 29.11.2012
Autor: MathePower

Hallo sissile,

> Man berechne
>  [mm]\int_K x^2[/mm] y d(x,y),
>  K= [mm]\{ (x,y) \in \IR^2 : x^2 \le y^ \le 3x^2 , 2 \le xy \le 3 \}[/mm]
>  
> und den Flächeninhalt von K.
>  Hinweis: Transformation auf ein Rechteck
>  Hallo,
>  ich verstehe nicht wie eine Transformation auf ein
> Rechteck aussehen soll...Sind Polar-, Kugel-, oder
> Zylinderkoordianten gemeint? Oder was ganz anderes.
>  Ich verstehe den Hinweis nicht.
>  


Die Ungleichungen lassen nur eine Transformation zu:

[mm]u=\bruch{y}{x^{2}}, \ 1 \le u \le 3[/mm]

[mm]v=x*y, \ 2 \le v \le 3[/mm]


Jetzt muss Du allerdings das Flächenelement d(x,y) noch transformieren.


> Liebe Grüße


Gruss
MathePower

Bezug
                
Bezug
Transformation Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:18 Do 29.11.2012
Autor: sissile


> Hallo sissile,
>  
> > Man berechne
>  >  [mm]\int_K x^2[/mm] y d(x,y),
>  >  K= [mm]\{ (x,y) \in \IR^2 : x^2 \le y^ \le 3x^2 , 2 \le xy \le 3 \}[/mm]
>  
> >  

> > und den Flächeninhalt von K.
>  >  Hinweis: Transformation auf ein Rechteck
>  >  Hallo,
>  >  ich verstehe nicht wie eine Transformation auf ein
> > Rechteck aussehen soll...Sind Polar-, Kugel-, oder
> > Zylinderkoordianten gemeint? Oder was ganz anderes.
>  >  Ich verstehe den Hinweis nicht.
>  >  
>
>
> Die Ungleichungen lassen nur eine Transformation zu:
>  
> [mm]u=\bruch{y}{x^{2}}, \ 1 \le u \le 3[/mm]
>  
> [mm]v=x*y, \ 2 \le v \le 3[/mm]
>  
>
> Jetzt muss Du allerdings das Flächenelement d(x,y) noch
> transformieren.

Danke.
Ja das ist klar
d (x,y) = [mm] \frac{-3y}{x^2} [/mm] d(u,v)
Oder schreibt man das anderes an?.
Aufjedenfall ist [mm] \frac{-3y}{x^2} [/mm] die determinante der Jacobimatrix.
Du hast ja nun als integrand den Term: [mm] x^2 [/mm] y | [mm] \frac{-3y}{x^2}| [/mm]
Wie ersetzt du denn nun in v und u so dass kein x und y mehr überigbleibt?




Bezug
                        
Bezug
Transformation Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 20:27 Do 29.11.2012
Autor: MathePower

Hallo sissile,

> > Hallo sissile,
>  >  
> > > Man berechne
>  >  >  [mm]\int_K x^2[/mm] y d(x,y),
>  >  >  K= [mm]\{ (x,y) \in \IR^2 : x^2 \le y^ \le 3x^2 , 2 \le xy \le 3 \}[/mm]
>  
> >  

> > >  

> > > und den Flächeninhalt von K.
>  >  >  Hinweis: Transformation auf ein Rechteck
>  >  >  Hallo,
>  >  >  ich verstehe nicht wie eine Transformation auf ein
> > > Rechteck aussehen soll...Sind Polar-, Kugel-, oder
> > > Zylinderkoordianten gemeint? Oder was ganz anderes.
>  >  >  Ich verstehe den Hinweis nicht.
>  >  >  
> >
> >
> > Die Ungleichungen lassen nur eine Transformation zu:
>  >  
> > [mm]u=\bruch{y}{x^{2}}, \ 1 \le u \le 3[/mm]
>  >  
> > [mm]v=x*y, \ 2 \le v \le 3[/mm]
>  >  
> >
> > Jetzt muss Du allerdings das Flächenelement d(x,y) noch
> > transformieren.
>  Danke.
>  Ja das ist klar
>  d (x,y) = [mm]\frac{-3y}{x^2}[/mm] d(u,v)


Das muss doch [mm]d (x,y) = -\frac{x^{2}}{3y} \ d(u,v)[/mm] lauten.


>  Oder schreibt man das anderes an?.


Der Ausdruck [mm]\bruch{-3y}{x^{2}}[/mm] muß in u und v ausgedrückt werden.


>  Aufjedenfall ist [mm]\frac{-3y}{x^2}[/mm] die determinante der
> Jacobimatrix.
>  Du hast ja nun als integrand den Term: [mm]x^2[/mm] y |
> [mm]\frac{-3y}{x^2}|[/mm]
> Wie ersetzt du denn nun in v und u so dass kein x und y
> mehr überigbleibt?
>  


Löse

[mm]u=\bruch{y}{x^{2}}, \ v=x*y[/mm]

nach x und y auf.


Gruss
MathePower

Bezug
                                
Bezug
Transformation Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:16 Do 29.11.2012
Autor: sissile


> Das muss doch d (x,y) = [mm] -\frac{x^2}{3y} [/mm] d(u,v) lauten.

Warum?
[mm] \phi= \vektor{y/x^2 \\ xy} [/mm]
D [mm] \phi =\pmat{ - 2 y/x^3 & 1/x^2\\ y& x } [/mm]
det (D [mm] \phi) [/mm] = - [mm] \frac{3y}{x^2} [/mm]

Muss ich dann nicht beim transfomrieren den betrag davon nehmen .
also | [mm] -\frac{3y}{x^2}| [/mm] = [mm] \frac{3y}{x^2} [/mm]
da [mm] x^2 [/mm] pos. und y zwischen pos werten eingeschlossen ist [mm] (x^2 \le [/mm] y [mm] \le 3x^2) [/mm]

> $ [mm] u=\bruch{y}{x^{2}}, [/mm] \ [mm] v=x\cdot{}y [/mm] $

> nach x und y auf.

u = [mm] y/x^2 [/mm] <=> y= u [mm] x^2 [/mm]
v= xy  <=> v = x u [mm] x^2 [/mm]  <=> v= [mm] x^3 [/mm] u <=> [mm] \wurzel[3]{v/u }= [/mm] x
Also y = u * [mm] (\wurzel[3]{v/u })^2 [/mm] = u [mm] \wurzel{v/u} [/mm]

Bezug
                                        
Bezug
Transformation Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 21:33 Do 29.11.2012
Autor: MathePower

Hallo sissile,


> > Das muss doch d (x,y) = [mm]-\frac{x^2}{3y}[/mm] d(u,v) lauten.
> Warum?


Hier ist nicht [mm]x=x\left(u,v\right), \ y=y\left(u,v\right)[/mm] gegeben,
sondern [mm]u=u\left(x,y\right), \ v=v\left(x,y\right)[/mm]

Und für die Jacobi-Matrix benötigst Du [mm]x=x\left(u,v\right), \ y=y\left(u,v\right)[/mm].


>  [mm]\phi= \vektor{y/x^2 \\ xy}[/mm]
>  D [mm]\phi =\pmat{ - 2 y/x^3 & 1/x^2\\ y& x }[/mm]
>  
> det (D [mm]\phi)[/mm] = - [mm]\frac{3y}{x^2}[/mm]
>  
> Muss ich dann nicht beim transfomrieren den betrag davon
> nehmen .
>  also | [mm]-\frac{3y}{x^2}|[/mm] = [mm]\frac{3y}{x^2}[/mm]
>  da [mm]x^2[/mm] pos. und y zwischen pos werten eingeschlossen ist
> [mm](x^2 \le[/mm] y [mm]\le 3x^2)[/mm]
>


Ja, beim Transformieren ist der Betrag zu nehmen.


> > [mm]u=\bruch{y}{x^{2}}, \ v=x\cdot{}y[/mm]
>  
> > nach x und y auf.
> u = [mm]y/x^2[/mm] <=> y= u [mm]x^2[/mm]
>  v= xy  <=> v = x u [mm]x^2[/mm]  <=> v= [mm]x^3[/mm] u <=> [mm]\wurzel[3]{v/u }=[/mm]

> x
>  Also y = u * [mm](\wurzel[3]{v/u })^2[/mm] = u [mm]\wurzel{v/u}[/mm]  


Der Ausdruck nach dem letzten Gleichheitszeichen stimmt nicht.


Gruss
MathePower

Bezug
                                                
Bezug
Transformation Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:48 Do 29.11.2012
Autor: sissile

Ah okay. Ich bin in den gebiet noch nicht so bewandert... Hab das erst gelernt.
Also heißt die Transformation: d(x,y) = [mm] |-\frac{x^2}{3y} [/mm] | d(u,v) <=>  d(x,y) = [mm] \frac{x^2}{3y} [/mm]  d(u,v)

x= [mm] (v/u)^{1/3} [/mm]
y= u [mm] (v/u)^{2/3} [/mm]

[mm] \int_K x^2 [/mm] y d(x,y) = [mm] \int_2^3 \int_1^3 (\frac{v}{u})^{\frac{2}{3}} [/mm] u [mm] (\frac{v}{u})^{\frac{2}{3}} [/mm] * [mm] \frac{1}{3u} [/mm] du dv =  [mm] \frac{1}{3}\int_2^3 \int_1^3 (\frac{v}{u})^{\frac{4}{3}} [/mm]  du dv
Oder am weg vorbei?
LG

Bezug
                                                        
Bezug
Transformation Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 22:16 Do 29.11.2012
Autor: MathePower

Hallo sissile,

> Ah okay. Ich bin in den gebiet noch nicht so bewandert...
> Hab das erst gelernt.
>  Also heißt die Transformation: d(x,y) = [mm]|-\frac{x^2}{3y}[/mm]
> | d(u,v) <=>  d(x,y) = [mm]\frac{x^2}{3y}[/mm]  d(u,v)

>
> x= [mm](v/u)^{1/3}[/mm]
>  y= u [mm](v/u)^{2/3}[/mm]
>  
> [mm]\int_K x^2[/mm] y d(x,y) = [mm]\int_2^3 \int_1^3 (\frac{v}{u})^{\frac{2}{3}}[/mm]
> u [mm](\frac{v}{u})^{\frac{2}{3}}[/mm] * [mm]\frac{1}{3u}[/mm] du dv =  
> [mm]\frac{1}{3}\int_2^3 \int_1^3 (\frac{v}{u})^{\frac{4}{3}}[/mm]  
> du dv
> Oder am weg vorbei?


Nein, da bist Du auf dem richtigen Weg.


>  LG


Gruss
MathePower

Bezug
                                                                
Bezug
Transformation Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:36 Do 29.11.2012
Autor: sissile

Gut ;)
Ich erhalte dann
[mm] \frac{7*(3^{7/3} + 3^{-1/3} -1 - 3^2}{27} [/mm]

Bezug
                                                                        
Bezug
Transformation Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 21:45 Fr 30.11.2012
Autor: MathePower

Hallo sissile,

> Gut ;)
>  Ich erhalte dann
>  [mm]\frac{7*(3^{7/3} + 3^{-1/3} -1 - 3^2}{27}[/mm]  


Da hab ich etwas anderes.


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de