www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitstheorie" - Transformation von Dichten
Transformation von Dichten < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Transformation von Dichten: In aufgabe stecken geblieben
Status: (Frage) beantwortet Status 
Datum: 11:36 Fr 23.03.2007
Autor: matzematisch

Aufgabe
Sei $X$ eine exponentiell verteile Zufallsvariable und [mm] $\epsilon$ [/mm] eine von $X$ unabhängige Zufallsvariable mit [mm] $P(\epsilon=-1)=P(\epsilon=1)=\bruch{1}{2}$. [/mm] Bestimme die Verteilung von [mm] $Z:=\epsilon [/mm] X$.

Hallo nochmal an alle Forumsteilnehmer,

bin auf die obige Aufgabe gestoßen und ahbe keinen Schimmer, wie ich vorzugehen habe.
Was ich weiss: Die Dichte $f(x)$ ist gegeben durch [mm] $f_X (x)=\lambda e^{-\lambda x} 1_{[0,\infty)}(x)$ [/mm] und entsprechend $P(X [mm] \le t)=F(t)=\lambda \int_{0}^{t} e^{-\lambda x} [/mm] dx$.
Ebenfalls weiss ich: $z=u(x)= [mm] \epsilon [/mm] x$ und somit [mm] $u^{-1} [/mm] (x) = [mm] \bruch{1}{\epsilon} [/mm] x$ und [mm] $\bruch{d}{dx} u^{-1} [/mm] (x) = [mm] \bruch{1}{\epsilon}$. [/mm]
Somit würde sich mit der Transformationsformel ergeben: [mm] f_Z (z)=f_X (u^{-1} [/mm] (z)) [mm] |\bruch{d}{dz}u^{-1} [/mm] (z)| = [mm] \bruch{\lambda}{\epsilon} e^{-\bruch{\lambda}{\epsilon} z}. [/mm]

So schön so gut, nur - sollte das tatsächlich die Lösung sein - wofür brauche ich denn dann noch die Angaben [mm] $P(\epsilon=-1)=P(\epsilon=1)=\bruch{1}{2}$ [/mm] ?
Ich werde einfach aus der Aufgabe  nicht schlau. Zudem irritiert mich in [mm] $P(\epsilon=-1)=P(\epsilon=1)=\bruch{1}{2}$ [/mm] das Gleichheitszeichen, denn bei der Wahrscheinlichkeitsfunktion sucht man ja immer nach der Wahrscheinlichkeit, dass die Zufallsvariable einen Wert kleiner oder gleich einer bestimmten Grenze annmimmt und eben nicht, dass sie einen Wert exakt annimmt. Zumal ja für Zufallsvariablen mit überall stetig differenzierbaren Dichten $f(x)$ stets gilt $P(X=x)=0$.

Wer kann mir weiterhelfen?

Vielen Dank, Matthias

        
Bezug
Transformation von Dichten: Laplace-Verteilung
Status: (Antwort) fertig Status 
Datum: 12:20 Fr 23.03.2007
Autor: luis52

Moin Matthias,

du hast hier zwei Zufallsexperimente, die zu $Z$ fuehren:  Im ersten realisiert sich $X$ (z.B. eine Wartezeit an einem Schalter) im zweiten realisiert sich unabhaengig davon [mm] $\epsilon$ [/mm] (z.B. ein Wuenzwurf). Mithin nimmt $Z$ im Gegensatz zu $X$ sowohl positive als auch negative Werte $z$ annehmen.  So nimmt $Z$ den Wert $-x$ bzw.  $+x$ an, wenn sich [mm] $(X,\epsilon)=(x,-1)$ [/mm] bzw.  [mm] $(X,\epsilon)=(x,+1)$ [/mm] realisiert.

Um die Verteilung von $Z$ bestimmen zu koennen, kann man wie folgt argumentieren: Fuer [mm] $z\in\IR$ [/mm] ist


[mm] \begin{matrix} P(Z\le z)&=&P((\epsilon=-1)\cap(Z\le z))+P((\epsilon=+1)\cap(Z\le z))\\ &=&P(Z\le z \mid \epsilon=-1)P(\epsilon=-1)+P(Z\le z \mid\epsilo=+1)P(\epsilon=+1)\\ &=&P(Z\le z \mid \epsilon=-1)\frac{1}{2}+P(Z\le z\mid\epsilo=+1)\frac{1}{2} \end{matrix} [/mm]

Mache  ich Gebrauch von [mm] $P(X\le x)=1-\lambda\exp[ -\lambda [/mm] x]$ fuer [mm] $x\ge [/mm] 0$, so  erhalte ich [mm] $P(Z\le z)=\exp[\lambda [/mm] z]/2$ fuer $z<0$ und [mm] $P(Z\le z)=(1-\exp[-\lambda [/mm] z])/2$ fuer [mm] $z\ge [/mm] 0$. Es handelt sich um eine Laplace-Verteilung, siehe z.B hier:

[]http://de.wikipedia.org/wiki/Laplace-Verteilung

hth


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de