www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Transformationen
Transformationen < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Transformationen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:37 Do 09.12.2010
Autor: wwfsdfsdf2

Aufgabe
Bestimme die Verteilungsfkt. [mm] F_Z_i [/mm] im Verhältnis zur Verteilungsfkt [mm] F_X [/mm] für
i) [mm] Z_1 [/mm] = 5 X
[mm] ii)Z_2 [/mm] = X²+X
[mm] iii)Z_3 [/mm] = |X|


Irgendwie stehe ich hier gerade so dermaßen auf dem Schlauch...

die i und iii kriege ich noch hin [mm] (F_Z_1(t) [/mm] = [mm] F_x(t/3),F_Z_3(t) [/mm] = [mm] F_x(t)-F_x(-t) [/mm] ), aber bei der ii hänge ich Fest:

P(X²+X<=t)

lässtsich leider nicht so leicht bewerksteligen - oder ich bin heute Abend einfach nur daneben?!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Transformationen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:08 Do 09.12.2010
Autor: Walde


> Bestimme die Verteilungsfkt. [mm]F_Z_i[/mm] im Verhältnis zur
> Verteilungsfkt [mm]F_X[/mm] für
>  i) [mm]Z_1[/mm] = 5 X
>  [mm]ii)Z_2[/mm] = X²+X
>  [mm]iii)Z_3[/mm] = |X|
>  
> Irgendwie stehe ich hier gerade so dermaßen auf dem
> Schlauch...
>  
> die i und iii kriege ich noch hin [mm](F_Z_1(t)[/mm] =
> [mm]F_x(t/3),F_Z_3(t)[/mm] = [mm]F_x(t)-F_x(-t)[/mm] ), aber bei der ii

Muss es bei der (i) nicht [mm] F_x(t/\red{5}) [/mm] heissen ?

> hänge ich Fest:
>  
> P(X²+X<=t)
>  
> lässtsich leider nicht so leicht bewerksteligen - oder ich
> bin heute Abend einfach nur daneben?!

Du kannst [mm] $P(X^2+X<=t)=P(X^2+X-t\le [/mm] 0)$ umformen, und dann mit p,q-Formel die Nullstellen [mm] x_1 [/mm] und [mm] x_2 [/mm] ausrechnen und dann die Äquivalenz [mm] $X^2+X\le t\gdw x_1\le X\le x_2$ [/mm] nutzen.


LG walde

Bezug
                
Bezug
Transformationen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:30 Do 09.12.2010
Autor: wwfsdfsdf2

natürlich /5, irgendwie ist aus der 5 eine 3 geworden unterwegs, danke.

Das ich ii) richtig verstehe:

Es wird berechnet, an welchen Stellen die fkt den Wert t hat. Könnte die Funktion dann aber nicht entweder im von dir genannten Intervall <=t sein ODER aber ebenso auch AUSSERHALB diese Intervalls (dann aber nicht mehr innerhalb) ?! dementsprechend wäre doch deine ÄQuivalenzaussage nicht allgemeingültig, oder?

Bezug
                        
Bezug
Transformationen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:39 Do 09.12.2010
Autor: Walde

Hi wwf,

prinzipiell natürlich schon, aber hier ist [mm] X^2+X-t [/mm] eine Parabel, die nach oben geöffnet ist (da der Koeffizient von [mm] X^2 [/mm] postiv ist), d.h. sie ist zwischen ihren Nullstellen kleiner Null und ausserhalb grösser Null.

LG walde

Bezug
                                
Bezug
Transformationen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:55 Do 09.12.2010
Autor: wwfsdfsdf2

OK, dann habe ich [mm] F_Z_2(t) [/mm] = [mm] F_X(sqrt(t+1/4)-1/2), [/mm] richtig?

edit: habe noch was zu Transformationen, soll das hier rein oder neues Thema? (ganz eigenständige Aufgabe)

Bezug
                                        
Bezug
Transformationen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:06 Do 09.12.2010
Autor: Walde


> OK, dann habe ich [mm]F_Z_2(t)[/mm] = [mm]F_X(sqrt(t+1/4)-1/2),[/mm]
> richtig?

Nein, da fehlt noch was. Es gilt doch [mm] P(x_1\le X\le x_2)=P(X\le x_2)-P(X\le x_1) [/mm]

>  
> edit: habe noch was zu Transformationen, soll das hier rein
> oder neues Thema? (ganz eigenständige Aufgabe)

Mach lieber einen neues Thema auf.


Bezug
                                                
Bezug
Transformationen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:22 Do 09.12.2010
Autor: wwfsdfsdf2

hmmm:

mit pq-Formel P=1  = -1

[mm] x_1/2 [/mm] = -0,5 +-sqrt(0,25+t)

mit der Äquivalenz dann

[mm] F_x(-0,5 [/mm] +sqrt(0,25+t)) - [mm] F_x(-0,5 [/mm] -sqrt(0,25+t))

ABER gerade ging mir folgendes durch den Kopf:

[mm] P(X^2+X [/mm] <= t) = [mm] P(X^2+X [/mm] +0,25 -0,25<= t)

= P( [mm] (x+0,5)^2 [/mm] -0,25<= t) = P( [mm] (x+0,5)^2<= [/mm] t+0,25)
= P( x <= sqrt (t+0,25)-0,5)

aber warscheinlich ist dann bei Methode 2 irgendwo ein Fehler?!

Bezug
                                                        
Bezug
Transformationen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:21 Do 09.12.2010
Autor: Walde


> hmmm:
>  
> mit pq-Formel P=1  = -1
>  
> [mm]x_1/2[/mm] = -0,5 +-sqrt(0,25+t)
>  
> mit der Äquivalenz dann
>  
> [mm]F_x(-0,5[/mm] +sqrt(0,25+t)) - [mm]F_x(-0,5[/mm] -sqrt(0,25+t))
>
> ABER gerade ging mir folgendes durch den Kopf:
>  
> [mm]P(X^2+X[/mm] <= t) = [mm]P(X^2+X[/mm] +0,25 -0,25<= t)
>  
> = P( [mm](x+0,5)^2[/mm] -0,25<= t) = P( [mm](x+0,5)^2<=[/mm] t+0,25)
>  = P( x <= sqrt (t+0,25)-0,5)
>  
> aber warscheinlich ist dann bei Methode 2 irgendwo ein
> Fehler?!

Ja, denn [mm] \wurzel{x^2}\not=x, [/mm] sondern [mm] \wurzel{x^2}=|x|, [/mm] sonst geht eine Lösung verloren. Daher auch das [mm] \pm [/mm] bei der p,q-Formel.

LG walde

Bezug
                                                                
Bezug
Transformationen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:28 Do 09.12.2010
Autor: wwfsdfsdf2

Danke sehr :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de