www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Transformationssatz
Transformationssatz < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Transformationssatz: Überprüfung
Status: (Frage) beantwortet Status 
Datum: 12:05 Sa 24.01.2009
Autor: snp_Drake

Aufgabe
Berechnen sie den Wert des Integrals [mm] \integral_{G}^{}{x^{2}+y^{2} dydx} [/mm]

Für den Integrationsbereich
[mm] G:={(x,y)\in\IR^{2} | |x|\ge 1 oder |y|\ge 1, x^{2}+y^{2}\le 2} [/mm]

in Polarkoordianten.

Ok, Polarkoordianten bedeuten:

[mm] x=rcos(\alpha) [/mm]
[mm] y=rsin(\alpha) [/mm]

Die neue Menge [mm] M={(r,\alpha)\in \IR^{2} | |rcos(\alpha)|\ge 1 oder |rsin\alpha| \ge 1^, r^{2}\le 2} [/mm]

daraus folgt: [mm] M={(r,\alpha)\in \IR^{2} | \alpha \ge \bruch{\pi}{4}, r\le \wurzel{2}} [/mm]

nun also da Integral:
|det [mm] \vec{x}'|=r [/mm] bei Polarkoordinaten

[mm] \integral_{M}^{}{r^{2}*r drd\alpha} [/mm]
=> [mm] \integral_{0}^{\wurzel{2}}{\integral_{\bruch{\pi}{4}}^{2\pi}{r^{3} d\alpha} dr} [/mm]

=> [mm] \bruch{7\pi}{4}*\bruch{r^{4}}{4}|_{0}^{\wurzel{2}}=\bruch{7}{4}\pi [/mm]

Ist das so richtig, kommt mir doch arg seltsam vor. Vor allem bei der obenen Grenze von [mm] \alpha [/mm] hab ich da so meine Zweifel.

        
Bezug
Transformationssatz: Antwort
Status: (Antwort) fertig Status 
Datum: 12:24 Sa 24.01.2009
Autor: Leopold_Gast

[mm]G[/mm] verstehe ich nicht. Werden bei solchen Beschreibungen Kommata gesetzt, sind diese üblicherweise als logisches "und" zu lesen. Und "und" bindet stärker als "oder". Damit wäre [mm]G[/mm] die folgende Menge:

[mm]G = \left\{ \left. \ (x,y) \in \mathbb{R}^2 \ \right| \ \ |x| \geq 1 \ \vee \ \left( \ |y| \geq 1 \ \wedge \ x^2 + y^2 \leq 2 \ \right) \ \right\}[/mm]

Dieser Bereich ist aber unbeschränkt!

Vermutlich wird also das Folgende gemeint sein:

[mm]G = \left\{ \left. \ (x,y) \in \mathbb{R}^2 \ \right| \ \left( \ |x| \geq 1 \ \vee \ |y| \geq 1 \ \right) \ \wedge \ x^2 + y^2 \leq 2 \ \right\}[/mm]

Da sollte also zunächst die Klammersetzung geklärt werden.

Bezug
                
Bezug
Transformationssatz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:39 Sa 24.01.2009
Autor: snp_Drake

Also, was gemeint ist:

G = { (x,y) [mm] \in \IR^{2} [/mm] | [mm] (|x|\ge [/mm] 1 oder [mm] |y|\ge [/mm] 1) und [mm] (x^{2}+y^{2}\le [/mm] 2) }

Bezug
                        
Bezug
Transformationssatz: Antwort
Status: (Antwort) fertig Status 
Datum: 12:59 Sa 24.01.2009
Autor: Leopold_Gast

Dann besteht [mm]G[/mm] aus vier Kreissegmenten, die bezüglich der Koordinatenachsen und der Geraden [mm]y=x[/mm] und [mm]y=-x[/mm] symmetrisch liegen. Da der Integrand unter diesen Symmetrien invariant ist (wenn man also [mm]x[/mm] durch [mm]-x[/mm] oder [mm]y[/mm] durch [mm]-y[/mm] substituiert oder die Variablen [mm]x[/mm] und [mm]y[/mm] vertauscht), genügt es, über das halbe Segment zu integrieren, das im I. Quadranten unterhalb der Geraden [mm]y=x[/mm] liegt, und den Integralwert zu verachtfachen, das wäre also die Menge [mm]\tilde{G}[/mm] aller [mm](x,y) \in G[/mm] mit zusätzlich [mm]x \geq 1[/mm] und [mm]y \geq 0[/mm]:

[mm]\int_G \left( x^2 + y^2 \right)~\mathrm{d}(x,y) \ = \ 8 \int_{\tilde{G}} \left( x^2 + y^2 \right)~ \mathrm{d}(x,y) \ = \ \ldots \ = \ 2 \pi - \frac{8}{3}[/mm]

Bezug
                                
Bezug
Transformationssatz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:18 Sa 24.01.2009
Autor: snp_Drake

Ok, das mit den Symmetrien hab ich verstanden, aber wie genau lautet denn dann die Menge G' und wie drücke ich das in Polarkoordinaten aus?

Bezug
                                        
Bezug
Transformationssatz: Antwort
Status: (Antwort) fertig Status 
Datum: 02:17 So 25.01.2009
Autor: Leopold_Gast

Zunächst einmal solltest du dir ein Bildchen malen. Ohne geht das nicht.
Jetzt betrachte einen Strahl, der vom Nullpunkt ausgeht und nach rechts zeigt. Drehe ihn langsam gegen den Uhrzeigersinn. Für welche Winkel [mm]\alpha[/mm] schneidet der Strahl die Menge [mm]\tilde{G}[/mm]? Das gibt dir das Integrationsintervall für die Variable [mm]\alpha[/mm] (äußere Integration).
Und dann denke dir einen dieser Winkel [mm]\alpha[/mm] fest. Welche Abstände [mm]r[/mm] vom Ursprung haben die Punkte von [mm]\tilde{G}[/mm]? Das gibt dir das Integrationsintervall für die Variable [mm]r[/mm] (innere Integration). Die Intergrationsgrenzen des inneren Integrals hängen von [mm]\alpha[/mm] ab. Zur Bestimmung der unteren Grenze beachte den aus der Schule bekannten Strahlensatz.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de