www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Transponierte M/char. Polyno
Transponierte M/char. Polyno < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Transponierte M/char. Polyno: Frage
Status: (Frage) beantwortet Status 
Datum: 16:32 Do 16.12.2004
Autor: Nette

Hallo!

Hab ne kurze Frage.
Ich muss zeigen, dass [mm] A^{t} [/mm] dieselben Eigenwerte wie A [mm] \in Mat_{n}(K) [/mm] hat.

Ich weiß ja, dass det(A)=det( [mm] A^{t}) [/mm]
und außerdem, dass die Eigenwerte einer Matrix die Nullstellen des charakteristischen Polynoms sind.

Charakt. Polynom von A = det(xI-A)
Kann ich jetzt aus oberem folgern, dass
Char. Polynom von A = det(xI-A) = det(xI- [mm] A^{t}) [/mm] (da ja die Transposition die Determinante nicht ändert)  = Char. Polynom von [mm] A^{t} [/mm] ?

Daraus kann ich ja dann folgern, da gleiches char. Polynom, gleiche Nullstellen und damit haben A und [mm] A^{t} [/mm] die selben Eigenwerte, oder?

Danke schon mal!

Gruß
Annette

        
Bezug
Transponierte M/char. Polyno: Antwort
Status: (Antwort) fertig Status 
Datum: 18:49 Do 16.12.2004
Autor: Marcel

Hallo (An)Nette,

> Hallo!
>  
> Hab ne kurze Frage.
> Ich muss zeigen, dass [mm]A^{t}[/mm] dieselben Eigenwerte wie A [mm]\in Mat_{n}(K)[/mm]
> hat.
>  
> Ich weiß ja, dass det(A)=det( [mm]A^{t})[/mm]
> und außerdem, dass die Eigenwerte einer Matrix die
> Nullstellen des charakteristischen Polynoms sind.
>  
> Charakt. Polynom von A = det(xI-A)
>  Kann ich jetzt aus oberem folgern, dass
> Char. Polynom von A = det(xI-A) = det(xI- [mm]A^{t})[/mm] (da ja die
> Transposition die Determinante nicht ändert)  = Char.
> Polynom von [mm]A^{t}[/mm] ?

Ja, eigentlich schon, nur fehlen (mir) da einige Kleinigkeiten, damit man auch alle Gedanken sieht (übrigens kenne ich das charakteristische Polynom als [m]det(A-xI)[/m], aber das ist ja nichts Wesentliches. Und bei Wikipedia steht, dass beide Definitionen benutzt werden, also halte ich mich mal an deine/eure.)
Char. Polynom von A =[m]det(xI-A) = det([xI-A]^t)=det([xI]^t-A^t)=det(x\underbrace{I^t}_{=I}-A^t)=det(xI- A^{t})[/m]=Char. Polynom von [mm] $A^t$ [/mm]

(Wobei diese Gleichheit [m]det(xI-A) = det([xI-A]^t)[/m] gilt, da die Transposition die Determinante nicht ändert, wie du oben geschrieben hast. Der Rest sind alles aus der linearen Algebra bekannte Rechenregeln für die Transponierte, z.B. [mm] $(A+B)^t=A^t+B^t$, $I^t=I$ [/mm] für Matrizen [m]A,B[/m] und die entsprechende Einheitsmatrix $I$.)
  

> Daraus kann ich ja dann folgern, da gleiches char. Polynom,
> gleiche Nullstellen und damit haben A und [mm]A^{t}[/mm] die selben
> Eigenwerte, oder?

So ist's! ;-)

Liebe Grüße,
Marcel

Bezug
                
Bezug
Transponierte M/char. Polyno: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:40 Fr 17.12.2004
Autor: Nette

Hi!

Daaankeee!
Das mit den Zwischenschritten war genau das, was ich nicht richtig wusste, aber ist ja eigentlich voll logisch.

Gruß
Annette

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de