www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Transposition und S_n
Transposition und S_n < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Transposition und S_n: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:32 Mo 29.06.2009
Autor: Pille456

Aufgabe
Eine Transposition ist ein Zyklus der Länge 2, d. h. eine Permutation, die
zwei Elemente vertauscht und alle übrigen fest lässt.
Sei n [mm] \in [/mm] N. Beweisen Sie, dass sich jede Permutation in [mm] S_n [/mm] als Verkettung
von Transpositionen der Form (i, i + 1) schreiben lässt. Wie viele derartige
Transpositionen braucht man höchstens?

Hi!
Mal wieder habe ich Probleme diese Frage richtig zu deuten.
Ich habe mir das folgendermaßen gedacht:
Ausgehend von der Identitätspermutation id = (1,2,3,...,n-1,n) in Zyklenschreibweise muss ich ja nur beweisen, dass ich durch die Vertauschung von zwei benachbarten Zahlen jede Zahl an jede beliebige Stelle bekomme. Da ich mit der Hintereinandeausführung einer Transposition die vorherige wieder Rückgängig machen kann ist das aber irgendwie logisch.
Genauer handelt es sich hierbei um eine Unterform des BubbleSort Algorithmus. Damit hätte ich auch schon die Anzahl der höchsten Vertauschungen gefunden, nämlich [mm] \bruch{n(n-1)}{2}. [/mm] Das ist nämlich der Fall, wenn ich aus (1,2,3,...,n-1,n) die Permutation (n,n-1,...,3,2,1) machen will.

Ist die Aufgabe so richtig interpretiert oder habe ich das einfach komplett falsch verstanden?

        
Bezug
Transposition und S_n: Antwort
Status: (Antwort) fertig Status 
Datum: 03:19 Mi 01.07.2009
Autor: felixf

Moin!

> Eine Transposition ist ein Zyklus der Länge 2, d. h. eine
> Permutation, die
>  zwei Elemente vertauscht und alle übrigen fest lässt.
>  Sei n [mm]\in[/mm] N. Beweisen Sie, dass sich jede Permutation in
> [mm]S_n[/mm] als Verkettung
>  von Transpositionen der Form (i, i + 1) schreiben lässt.
> Wie viele derartige
>  Transpositionen braucht man höchstens?
>
>  Hi!
>  Mal wieder habe ich Probleme diese Frage richtig zu
> deuten.
>  Ich habe mir das folgendermaßen gedacht:
>  Ausgehend von der Identitätspermutation id =
> (1,2,3,...,n-1,n) in Zyklenschreibweise muss ich ja nur
> beweisen, dass ich durch die Vertauschung von zwei
> benachbarten Zahlen jede Zahl an jede beliebige Stelle
> bekomme.

Genau.

> Da ich mit der Hintereinandeausführung einer
> Transposition die vorherige wieder Rückgängig machen kann
> ist das aber irgendwie logisch.

Hmm, naja dass daraus die Behauptung folgt ist nicht umbedingt logisch, allerdings das hier:

>  Genauer handelt es sich hierbei um eine Unterform des
> BubbleSort Algorithmus.

Diese Interpretation habe ich noch nie gesehen, und halte das fuer eine sehr interessante Bemerkung :)

> Damit hätte ich auch schon die
> Anzahl der höchsten Vertauschungen gefunden, nämlich
> [mm]\bruch{n(n-1)}{2}.[/mm] Das ist nämlich der Fall, wenn ich aus
> (1,2,3,...,n-1,n) die Permutation (n,n-1,...,3,2,1) machen
> will.

Genau.

> Ist die Aufgabe so richtig interpretiert oder habe ich das
> einfach komplett falsch verstanden?

Du hast sie schon richtig interpretiert. Du musst nur noch formal richtig aufschreiben, warum das so geht.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de