www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Trapez- und Simpsonregel
Trapez- und Simpsonregel < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Trapez- und Simpsonregel: Was hab ich falsch gemacht?
Status: (Frage) beantwortet Status 
Datum: 16:33 Sa 03.12.2011
Autor: LaBella

Hallo, wir haben letztens die Trapez- und Simpsonregel durchgemacht aber leider keine Bsp dazu gerechnet...nur haben wir folgendes als HÜ [mm] auf:\integral_{0}^{1}{e^{-x} dx} [/mm]
wir sollen es analytisch, mit der Trapez und mit der Simpsonregel berechnen..jeweils mit 5 Stützpunkten.
komischerweise kommt aber bei mir auf allen drei arten was anderes raus...und ich bin mir nicht ganz sicher ob ich richtig eingesetzt habe...Ich poste jetzt einfach mal wie ich vorgegangen bin.
1. Analytisch: [mm] \integral_{0}^{1}{e^{-x} dx} [/mm] = [mm] e^{-x}+C [/mm] dann 0 und 1 einsetzen und subtrahieren: da kommt mir ne minus zahl raus...das kommt mir ja schonmal komisch vor :-? -0,63

2. Trapezregel mit 5 Stützpunkten
Hab mit folgender Formel gerechnet: [mm] (\bruch{f(xo)}{2}+f(x1)....f(xn-1)+\bruch{f(xn)}{2})*\bruch{b-a}{n} [/mm]
um f(xo), f(x1) usw..zu bekommen hab ich dann in [mm] e^{-x} [/mm] die jeweiligen Zahlen (0,1...) eingesetzt...stimmt das überhaupt so oder muss ich da was anderes einsetzen? und was setz ich für "n" ein ? 5- wegen der 5 Stützpunkte? So hab ichs hald gemacht und bin dann auf 0,2167 gekommen.

3. Für die Simspon-REgel hab ich diese Formel gehabt: [mm] \bruch{b-a}{3n}*(yo+4y1+2y2+4y3....2yn-2*4yn-1+yn) [/mm]  Hier war ich unsicher was ich für y0,y1 usw.. einsetzen muss...hab dann hald wieder die jeweiligen werte (1,2,..) in die e^-x Formel eingesetzt? es ist mir 0,37 rausgekommen....müsste nicht bei allen Varianten das gleiche rauskommen? bzw könnt ihr mir vl sagen was ich beim einsetzen anders machen muss? Danke euch
lg




        
Bezug
Trapez- und Simpsonregel: Antwort
Status: (Antwort) fertig Status 
Datum: 16:59 Sa 03.12.2011
Autor: Al-Chwarizmi


> Hallo, wir haben letztens die Trapez- und Simpsonregel
> durchgemacht aber leider keine Bsp dazu gerechnet...nur
> haben wir folgendes als HÜ auf: [mm]\integral_{0}^{1}{e^{-x} dx}[/mm]
>  
> wir sollen es analytisch, mit der Trapez und mit der
> Simpsonregel berechnen..jeweils mit 5 Stützpunkten.
> komischerweise kommt aber bei mir auf allen drei arten was
> anderes raus...

Grundsätzlich ist das ja auch zu erwarten, denn es
handelt sich ja um die exakte Lösung (natürlich dann
auch gerundet) und zwei unterschiedlich gute Näherungen.
Natürlich sollten die Werte trotzdem nahe beieinander
liegen.

> und ich bin mir nicht ganz sicher ob ich
> richtig eingesetzt habe...Ich poste jetzt einfach mal wie
> ich vorgegangen bin.
> 1. Analytisch: [mm]\integral_{0}^{1}{e^{-x} dx}[/mm] = [mm]e^{-x}+C[/mm] dann
> 0 und 1 einsetzen und subtrahieren: da kommt mir ne minus
> zahl raus...das kommt mir ja schonmal komisch vor :-?
> -0,63

Du hast falsch eingesetzt. Es gilt (falls F'=f) :

    [mm] $\integral_{a}^{b}f(x)\,dx\ [/mm] =\ F(b)-F(a)$


> 2. Trapezregel mit 5 Stützpunkten
>  Hab mit folgender Formel gerechnet:
> [mm](\bruch{f(xo)}{2}+f(x1)....f(xn-1)+\bruch{f(xn)}{2})*\bruch{b-a}{n}[/mm]
>  um f(xo), f(x1) usw..zu bekommen hab ich dann in [mm]e^{-x}[/mm]
> die jeweiligen Zahlen (0,1...) eingesetzt...stimmt das
> überhaupt so oder muss ich da was anderes einsetzen? und
> was setz ich für "n" ein ? 5- wegen der 5 Stützpunkte? So
> hab ichs hald gemacht und bin dann auf 0,2167 gekommen.   [notok]

5 Stützpunkte (wovon 2 an den Integrationsgrenzen)
bedeutet 4 Teilintervalle, also n=4. Die Nummerierung
der Stützstellen geht von [mm] x_0 [/mm] bis und mit [mm] x_4. [/mm]

> 3. Für die Simspon-REgel hab ich diese Formel gehabt:
> [mm]\bruch{b-a}{3n}*(yo+4y1+2y2+4y3....2yn-2*4yn-1+yn)[/mm]   [haee]

Dies solltest du mittels Formeleditor verständlich schreiben !
  

> Hier war ich unsicher was ich für y0,y1 usw.. einsetzen
> muss...hab dann hald wieder die jeweiligen werte (1,2,..)
> in die e^-x Formel eingesetzt?    [haee]

Die y-Werte sind natürlich dieselben wie für die
Rechnung nach Trapezregel, also z.B.

    $\ [mm] y_3\ [/mm] =\ [mm] f(x_3)\ [/mm] =\ [mm] f\left(0+\frac{3}{4}*(1-0)\right)\ [/mm] =\ [mm] e^{-0.75}\ \approx\ [/mm] 0.472367$

LG   Al-Chw.







Bezug
                
Bezug
Trapez- und Simpsonregel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:48 Sa 03.12.2011
Autor: LaBella

Danke, das hat mir schon sehr geholfen! Nur wo du die letzte fOrmel her hast Mt y3=... weiß ich nicht genau! Und wenn das ganze in vier Teile aufgeteilt wird, muss ich mir dann die breite der teilintervalle ausrechnen und das für x1,x2..einsetzen oder einfach 1,2,3..?

Bezug
                        
Bezug
Trapez- und Simpsonregel: Antwort
Status: (Antwort) fertig Status 
Datum: 21:07 Sa 03.12.2011
Autor: leduart

Hallo
di [mm] x_i [/mm] sind doch die stützstellen, also welche sind das?
und die breite geht ja mit (b-a)/n ein. [mm] y_3 [/mm] ist  der Funktionswert an der Stelle [mm] x_3 [/mm] wo ist die bei dir?
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de