www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integrieren und Differenzieren" - Trapezformel
Trapezformel < Integr.+Differenz. < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrieren und Differenzieren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Trapezformel: Fläche eines Kreisabschnitts
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 20:03 Mi 10.09.2014
Autor: mathgenius

Aufgabe
Zur neuen Saison möchte der Platzwart das Spielfeld besonders schön herrichten.
Er markiert hierfür die in der Abbildung gezeigten Spielfeldelemente
neu: den Elfmeterpunkt (Kreuz), die Strafraumgrenze (waagrechte Linie) und
das Kreisbogenstück vor dem Strafraum. Die hierfür nötigen Maße nennt
ihm der DFB: Der Elfmeterpunkt ist 11 m von der Torlinie entfernt (dazu
hätten wir keinen DFB gebraucht), die Strafraumgrenze 16 m, und das Bogenstück
ist Teil eines Kreises, dessen Mittelpunkt der Elfmeterpunkt und
dessen Radius 9,15 m ist.
Bestimmen Sie mithilfe der Trapezformel näherungsweise die Größe der grau schraffierten Fläche mit einer Genauigkeit von [mm] \varepsilon=0,5m^2. [/mm]

1. Nach einer Skizze habe ich zunächst ein rechtwinkliges Dreieck innerhalb des Kreises ausgemacht mit der Seite

[mm] p=\wurzel{9,15^2-5^2}=7,663 [/mm]

Damit sind die Nullstellen des Kreisbogenstücks auch bestimmt:
[mm] p_1=7,663 [/mm] und [mm] p_2=-7,663 [/mm]

2. Nun muss die Fläche mit der Trapezformel berechnet werden. Dazu kann die Kreisgleichung verwendet werden:

[mm] y=\wurzel{r^2-x^2} [/mm]

Da jedoch nur die Fläche des oberen Kreisstücks relevant ist, muss hier eine entsprechende Flächensubtraktion vorgenommen werden. Diese kann mit der Geradengleichung y=5 durchgeführt werden. Dadurch ändert sich das Integral in folgendes:

[mm] \integral_{7,663}^{-7,663}{\wurzel{9,15^2-x^2}-5 dx}=44,79 [/mm]

Das Problem ist, dass ich nicht weiß, wie ich das mit der Trapezformel machen soll. Grafisch habe ich mir vorgestellt, dass lauter Sehnentrapze im Kreisstück nebeneinandergereiht werden müssen. Allerdings weiß ich nicht, wie viele Trapeze n notwendig sind, um eine Genauigkeit von 0,5 zu erreichen. Soll ich hier raten?

Wenn die Anzahl vorhanden wäre, könnte ich auch eine Wertetabelle mit den entsprechenden Werten berechnen. Hier habe ich für n=4 genommen. Die x und y Werte für die EINE HÄLFTE des Kreisstücks lauten damit:

n | x      | f(x)
0 | 0,0000 | 4,15
1 | 1,9157 | 3,9471
2 | 3,8315 | 3,3091
3 | 5,7472 | 2,1197
4 | 7,6630 | 0


Die Fläche eines Sehnentrapezes berechnet man laut Wikipedia mit der Formel [mm] T(f)=Breite*\bruch{f(a)}{f(b)} [/mm]

Allerdings weiß ich nicht, wie man hier auf n kommen soll. Ich weiß auch nicht, wie ich eine Genauigkeit von 0,5 berechnen kann. Nehme ich den oben berechneten Wert, muss die Aufgabe dann richtig sein, wenn ein Wert von 44,29 herauskommt. Irgendwie finde ich das verwirrend. Kann mir jemand freundlicherweise helfen?

Die Aufgabe soll benotet werden. Ich bitte deswegen nur um richtungsweisende Unterstützung. DANKE!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Trapezformel: Antwort
Status: (Antwort) fertig Status 
Datum: 09:38 Do 11.09.2014
Autor: meili

Hallo mathgenius,

[willkommenmr]

> Zur neuen Saison möchte der Platzwart das Spielfeld
> besonders schön herrichten.
>  Er markiert hierfür die in der Abbildung gezeigten
> Spielfeldelemente
>  neu: den Elfmeterpunkt (Kreuz), die Strafraumgrenze
> (waagrechte Linie) und
>  das Kreisbogenstück vor dem Strafraum. Die hierfür
> nötigen Maße nennt
>  ihm der DFB: Der Elfmeterpunkt ist 11 m von der Torlinie
> entfernt (dazu
>  hätten wir keinen DFB gebraucht), die Strafraumgrenze 16
> m, und das Bogenstück
>  ist Teil eines Kreises, dessen Mittelpunkt der
> Elfmeterpunkt und
>  dessen Radius 9,15 m ist.
>  Bestimmen Sie mithilfe der Trapezformel näherungsweise
> die Größe der grau schraffierten Fläche mit einer
> Genauigkeit von [mm]\varepsilon=0,5m^2.[/mm]
>  1. Nach einer Skizze habe ich zunächst ein rechtwinkliges
> Dreieck innerhalb des Kreises ausgemacht mit der Seite
>  
> [mm]p=\wurzel{9,15^2-5^2}=7,663[/mm]
>  
> Damit sind die Nullstellen des Kreisbogenstücks auch
> bestimmt:
>  [mm]p_1=7,663[/mm] und [mm]p_2=-7,663[/mm]
>  
> 2. Nun muss die Fläche mit der Trapezformel berechnet
> werden. Dazu kann die Kreisgleichung verwendet werden:
>  
> [mm]y=\wurzel{r^2-x^2}[/mm]
>  
> Da jedoch nur die Fläche des oberen Kreisstücks relevant
> ist, muss hier eine entsprechende Flächensubtraktion
> vorgenommen werden. Diese kann mit der Geradengleichung y=5
> durchgeführt werden. Dadurch ändert sich das Integral in
> folgendes:
>  
> [mm]\integral_{7,663}^{-7,663}{\wurzel{9,15^2-x^2}-5 dx}=44,79[/mm]

Bis hier [ok]

>  
> Das Problem ist, dass ich nicht weiß, wie ich das mit der
> Trapezformel machen soll. Grafisch habe ich mir
> vorgestellt, dass lauter Sehnentrapze im Kreisstück
> nebeneinandergereiht werden müssen. Allerdings weiß ich

Ja, so sieht das aus.

> nicht, wie viele Trapeze n notwendig sind, um eine
> Genauigkeit von 0,5 zu erreichen. Soll ich hier raten?

Das n sollst du bestimmen.
Wahrscheinlich über eine Fehlerabschätzung für die zusammengesetzte
Trapezformel.
Wenn in der Fehlerabschätzung nur h, und nicht n, vorkommt, kann man
verwenden $h = [mm] \bruch{b-a}{n}$. [/mm]

>  
> Wenn die Anzahl vorhanden wäre, könnte ich auch eine
> Wertetabelle mit den entsprechenden Werten berechnen. Hier
> habe ich für n=4 genommen. Die x und y Werte für die EINE
> HÄLFTE des Kreisstücks lauten damit:
>  
> n | x      | f(x)
>  0 | 0,0000 | 4,15
> 1 | 1,9157 | 3,9471
>  2 | 3,8315 | 3,3091
>  3 | 5,7472 | 2,1197
>  4 | 7,6630 | 0
>  
>
> Die Fläche eines Sehnentrapezes berechnet man laut
> Wikipedia mit der Formel [mm]T(f)=Breite*\bruch{f(a)}{f(b)}[/mm]

Ist das ein Tippfehler?
Die Fläche eines Sehnentrapezes berechnet man laut
Wikipedia mit der Formel [mm]T(f)=Breite*\bruch{f(a)+f(b)}{2}[/mm]

>  
> Allerdings weiß ich nicht, wie man hier auf n kommen soll.
> Ich weiß auch nicht, wie ich eine Genauigkeit von 0,5
> berechnen kann. Nehme ich den oben berechneten Wert, muss
> die Aufgabe dann richtig sein, wenn ein Wert von 44,29
> herauskommt. Irgendwie finde ich das verwirrend. Kann mir
> jemand freundlicherweise helfen?
>  
> Die Aufgabe soll benotet werden. Ich bitte deswegen nur um
> richtungsweisende Unterstützung. DANKE!
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

Gruß
meili

Bezug
                
Bezug
Trapezformel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:42 Sa 13.09.2014
Autor: mathgenius

Danke meili!

> Ist das ein Tippfehler?
> Die Fläche eines Sehnentrapezes berechnet man laut
> Wikipedia mit der Formel [mm]T(f)=Breite*\bruch{f(a)+f(b)}{2}[/mm]

Ja stimmt, habe mich vertippt.

Ich habe das jetzt ausprobiert mit n=3, n=4 und n=5:

n=3 --> 43,18
n=4 --> 43,87
n=5 --> 44,20

Damit scheint die Aufgabe nicht erfüllt zu sein, denn eine Abweichung von genau 0,5 trifft nicht ein.

Bezug
                        
Bezug
Trapezformel: Antwort
Status: (Antwort) fertig Status 
Datum: 09:40 Sa 13.09.2014
Autor: DieAcht

Hallo mathgenius und [willkommenmr]!


> [mm]T(f)=Breite*\bruch{f(a)+f(b)}{2}[/mm]

Anstatt "Breite" würde ich [mm] $(b-a)\$ [/mm] schreiben und Klammern setzen.

> Ich habe das jetzt ausprobiert mit n=3, n=4 und n=5:
>  
> n=3 --> 43,18
> n=4 --> 43,87
> n=5 --> 44,20
>  
> Damit scheint die Aufgabe nicht erfüllt zu sein, denn eine
> Abweichung von genau 0,5 trifft nicht ein.  

Das Prinzip ist richtig. Im Grunde ist nach einem [mm] n\in\IN [/mm] gesucht mit

      [mm] \left|\left(\integral_{7,663}^{-7,663}{\wurzel{9,15^2-x^2}-5 dx}\right)-T_n(f)\right|\le\frac{1}{2}=\epsilon. [/mm]

Für [mm] $n=5\$ [/mm] ist das "noch" nicht gegeben und "exakt" muss es
natürlich auch nicht sein, sondern "Kleiner-Gleich" Epsilon. ;-)


Übrigens: Falls du noch eine gute Seite brauchst und nicht mehr
weiter weißt, dann empfehle ich dir auf jeden Fall die Herleitung,
denn im Grunde betrachten wir die numerischen Integration mit
Newton-Cotes-Formeln und für [mm] $n=1\$ [/mm] erhalten wir die obige Trapezregel.
Für [mm] $n=2\$ [/mm] die Simpson-Regel (auch Keplersche Fassregel), ...
Falls das auch nicht reicht, kannst du nach deiner Rechnung auf
die summierten Newton-Cotes-Formeln übergehen oder dich kurz mit
"besseren" Methoden, z.B. Gauß-Quadraturen, beschäftigen.

Viel Spaß!


Gruß
DieAcht

Bezug
                                
Bezug
Trapezformel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:30 Mo 22.09.2014
Autor: mathgenius

Dank euch beiden, konnte ich die Aufgabe lösen!

Bezug
        
Bezug
Trapezformel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:46 Di 13.01.2015
Autor: Diamondx2002

Aufgabe
Wenn die Anzahl vorhanden wäre, könnte ich auch eine Wertetabelle mit den entsprechenden Werten berechnen. Hier habe ich für n=4 genommen. Die x und y Werte für die EINE HÄLFTE des Kreisstücks lauten damit:

Hallo,
irgendwie stehe ich auf dem Schlauch.
Bis zur Flächensubtraktion komme ich mit.
Um nun die Trapezformel anwenden zu können muss ich doch den Intervall -7,633 bis 7,633 in zB. 4 Teilsegmente teilen.
Also [Schrittweite 3,8315]

X0   -7,663             Y0=9,3165
X1   -3,8315           Y1=3,3091
X2   0                      Y2=4,15
X3   3,8315             Y3= 3,3091
X4   7,663               Y4=9,3165

Dann werden diese Werte in die vorher ermittelte Gleichung [mm] y=sqrt(r^2-x^2)-5 [/mm] eingesetzt.
Daraus erhalte ich meine f(x) Werte.
Nun zur Trapezformel, diese lautet doch wie folgt:

T(f)= "Schrittweite" * f(X0)/2 + f(X1) + f(X2) + ... + f(X4)/2

dann komme ich aber auf einen Wert von 76,95???
Ich stehe echt auf dem Schlauch.

Bezug
                
Bezug
Trapezformel: Antwort
Status: (Antwort) fertig Status 
Datum: 12:33 Mi 14.01.2015
Autor: meili

Hallo Diamondx2002,

[willkommenmr]

> Wenn die Anzahl vorhanden wäre, könnte ich auch eine
> Wertetabelle mit den entsprechenden Werten berechnen. Hier
> habe ich für n=4 genommen. Die x und y Werte für die EINE
> HÄLFTE des Kreisstücks lauten damit:
>  Hallo,
>  irgendwie stehe ich auf dem Schlauch.
>  Bis zur Flächensubtraktion komme ich mit.
>  Um nun die Trapezformel anwenden zu können muss ich doch
> den Intervall -7,633 bis 7,633 in zB. 4 Teilsegmente
> teilen.
>  Also [Schrittweite 3,8315]

[ok]

>  
> X0   -7,663             Y0=9,3165
>  X1   -3,8315           Y1=3,3091
>  X2   0                      Y2=4,15
>  X3   3,8315             Y3= 3,3091
>  X4   7,663               Y4=9,3165
>  
> Dann werden diese Werte in die vorher ermittelte Gleichung
> [mm]y=sqrt(r^2-x^2)-5[/mm] eingesetzt.
> Daraus erhalte ich meine f(x) Werte

[ok]
Wenn deine YN-Werte f(XN) ist, so stimmen Y1, Y2 und Y3.
Aber Y0 = Y4 = 0.

>  Nun zur Trapezformel, diese lautet doch wie folgt:
>  
> T(f)= "Schrittweite" * f(X0)/2 + f(X1) + f(X2) + ... +
> f(X4)/2

Hier fehlen Klammern.
T(f) = "Schrittweite" *(f(X0)/2 + f(X1) + f(X2) + f(X3) + f(X4)/2)

>  
> dann komme ich aber auf einen Wert von 76,95???
>  Ich stehe echt auf dem Schlauch.

Gruß
meili

Bezug
                        
Bezug
Trapezformel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:44 Mi 28.01.2015
Autor: Diamondx2002

Danke für die Hilfe, habe die Aufgabe gelöst. Vielen Dank!!!

Sorry für die sehr späte Antwort.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrieren und Differenzieren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de