www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitsrechnung" - Trefferwahrscheinlichkeit
Trefferwahrscheinlichkeit < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Trefferwahrscheinlichkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:12 Mi 27.05.2009
Autor: DerDon

Aufgabe
A. geht auf ein Fest an den Schießstand. Er hat fünf Schüsse und normalerweise eine Trefferquote von 70%. Von den fünf Schüssen darf er höchstens 2 verschießen, um einen Preis zu gewinnen. Mit welcher Wahrscheinlichkeit gewinnt A. einen Preis?

Hallo Leute!

Schreibe morgen Klausur und wir haben mal einen ähnlichen Aufgabentyp gemacht. Jetzt ist mir eben diese Frage eingefallen, aber ich weiß leider selber nicht, wie es geht!
Ich dachte mir vielleicht 1-0,3*0,3*0,3 . Aber das Ergebnis wäre dann ein wenig zu hoch, glaube ich.
Kann mir jemand helfen?

Dankeschön.

        
Bezug
Trefferwahrscheinlichkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 18:24 Mi 27.05.2009
Autor: ms2008de

Hallo,
wie wärs mit einer Bernoullikette, als Zufallsgröße X wählst du die Anzahl der Treffer und berechnest P(X [mm] \ge [/mm] 3). Das liefert dir die Lösung.

Viele Grüße

Bezug
                
Bezug
Trefferwahrscheinlichkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:39 Mi 27.05.2009
Autor: DerDon

Also im Ansatz so:

[mm] \vektor{5 \\ x} [/mm] * [mm] 0,7^x [/mm] * [mm] (1-0,7)^{5-x} [/mm]


richtig?
Jetzt also nur noch das x rausbekommen, mal schauen, wie das geht^^

Bezug
                        
Bezug
Trefferwahrscheinlichkeit: Falsche Richtung
Status: (Antwort) fertig Status 
Datum: 18:50 Mi 27.05.2009
Autor: weightgainer

Hallo,
ich glaube, du läufst in die falsche Richtung. In deinem Ansatz sieht es so aus, als würdest du jetzt für x eine Zahl suchen. Aber in der Aufgabe sollst du doch eine W-keit berechnen.
Du kannst z.B. eine Zufallsvariable festlegen:
X: Anzahl der Nichttreffer (es geht auch mit Anzahl der Treffer, das geht ganz genauso, nur musst du ein paar Zahlen austauschen).
Gesucht: P(X [mm] \le [/mm] 2)

Entweder kannst du das in einer Tabelle nachschauen oder du rechnest gerade alle Fälle aus:
P(X [mm] \le [/mm] 2) = P(X=0) + P(X=1) + P(X=2)

Und jeden einzelnen Summanden kannst du so berechnen, wie du das ja auch schon machen wolltest, z.B.
P(X=1) = [mm]\vektor{5 \\ 1}*0,3^1*0,7^4[/mm]

(Anmerkung: Wenn du Y: Anzahl der Treffer wählst, brauchst du natürlich 3, 4 oder 5 Treffer, d.h. die entsprechende W-keit zu dem Beispiel wäre:
P(Y=4) = [mm]\vektor{5 \\ 4}*0,7^4*0,3^1[/mm])

Einfacher geht es meines Wissens nicht :-).

Gruß,
weightgainer

Bezug
                                
Bezug
Trefferwahrscheinlichkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:09 Mi 27.05.2009
Autor: DerDon

Ok, dankeschön!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de