www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - Treppenfunktionen
Treppenfunktionen < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Treppenfunktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:48 Do 17.05.2007
Autor: Nadine87

Aufgabe
Hi!
Also, ich hab da ein Problem und hoffe ihr könnt mir helfen.
Die Aufgabe lautet:

Es seien a,b Element [mm] \IR [/mm] mit 0<a<b, p Element [mm] \IN [/mm] und f:[a,b]-> [mm] \IR [/mm] definiert durch f(x) := [mm] x^{p}. [/mm] Geben Sie eine Folge von Treppenfunktionen [mm] t_{n} [/mm] an mit [mm] t_{n} [/mm] -> f (n -> [mm] \infty [/mm] ) gleichmäßig auf [a,b], und zeigen Sie, dass

[mm] \integral_{a}^{b}{x^{p} dx}= \bruch{b^{p+1}}{p+1} [/mm] - [mm] \bruch{a^{p+1}}{p+1} [/mm]

gilt.


Ich weiß, dass ich die Funktion auf gleichmäßige Konvergenz untersuchen muss, allerdings weiß ich nicht genau, wie das funktioniert und weiter weiß ich dann auch nicht mehr.

Ich hoffe, dass mir jemand helfen kann!

Mfg
Nadine

        
Bezug
Treppenfunktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:42 Do 17.05.2007
Autor: Hund

Hallo,

du hast doch eine stetige Funktion auf kompaktem Intervall, also ist f glm. stetig. Jetzt wählst du eine Folge von äquidistanten Zerlegungen, deren Feinheit gegen 0 konvergiert. Die entsprechenden Treppenfunktionen konstruierst du so:
1. In einem Zerlegungspunkt wählst du den Funktionswert in dem Punkt als Funktionswert der Treppenfunktion.

2. Zwischen den Zerlegungspunkten, wählst du als Funktionswert der Treppenfunktion, den Treppenfunktionswert des linken oder rechten Endpunktes.

So hast du zu jeder Zerlegung eine Treppenfunktion. Da deine Zerlegung immer feiner wird konvergieren die Treppenfunktionen nach Konstruktion gegen f. Die Konvergenz ist glm. weil f glm. stetig ist. (Das ist der "Kernpunkt des Beweises", das musst du zeigen, überlege mal was glm. Stetigkeit bedeutet). Jetzt hast du eine Folge von Treppenfunktionen die glm. gegen f konvergiert. Du kannst dann damit das Integral wie ihr es in der Vorlesung definiert habt berechnen.
Wenn du noch Fragen hast, melde dich.

Ich hoffe, es hat dir geholfen.

Gruß
Hund

Bezug
                
Bezug
Treppenfunktionen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 18:32 So 20.05.2007
Autor: Nadine87

Hey!

Tut mir echt leid, aber ich kann mit deiner Antwort nicht allzu viel anfangen. Könntest du mir das noch ein bisschen ausführlicher erklären?

Lg
Nadine

Bezug
                        
Bezug
Treppenfunktionen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:20 Di 22.05.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de