www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - Trigamma-Funktion
Trigamma-Funktion < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Trigamma-Funktion: Tipp
Status: (Frage) beantwortet Status 
Datum: 15:31 Do 19.04.2012
Autor: lyx

Hallo an alle,

Ich  habe diese Frage in keinen anderen Forum gestellt. Nachdem Ihr mir bei meiner letzten Frage so gut geholfen habt, habe ich eine weitere Frage zu meine Problem:

Ich habe eine Summe aus Trigammafunktionen [mm] \psi_1: [/mm]

[mm] \frac{I}{4d^2h}\left[ \psi_1 \left( \frac{1}{2}+\frac{n}{2}-\frac{h}{d}I \right) - \psi_1 \left(\frac{1}{2}+\frac{n}{2}+\frac{h}{d}I \right) - \psi_1 \left(\frac{1}{2}-\frac{n}{2}-\frac{h}{d}I\right) +\psi_1 \left(\frac{1}{2}-\frac{n}{2}+\frac{h}{d}I\right) \right] [/mm]      (*)

Dabei bezeichnet I die komplexe Einheit,
h und d sind Parameter mit h,d [mm] \in \IR_+ [/mm] , und n [mm] \in \IN. [/mm]

Nach den dahinterliegenden physikalischen Überlegungen müsste (*) identisch 0 sein. Ich versuche also zu zeigen, dass auch mathematisch gilt

(*) [mm] \equiv [/mm] 0

bisher habe ich versucht die Integraldarstellung der Trigammafunktion

[mm] \psi_1(z) [/mm] = - [mm] \int_0^1 \frac{x^{z-1} \ln x}{1-x}dx [/mm]

in (*) einzusetzen. Dies führt mich aber nicht zu den gewünschten Ergebnis.

Kann mir jemand von euch einen Tipp geben wie ich zu den gewünschten Ergebnis komme? Ist (*) [mm] \equiv [/mm] 0 überhaupt zu zeigen?

Gibt es ein gutes Skript oder Formelsammlung wo Sätze über die Di-und Trigamma oder allgemein Polygamma Funktion aufgelistet sind? Es sollte aber über das was in Wikipedia steht hinaus gehen.


Danke für eure Hilfe
Viele Grüße
Lyx  

        
Bezug
Trigamma-Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 17:31 Do 19.04.2012
Autor: rainerS

Hallo lyx!

> Hallo an alle,
>  
> Ich  habe diese Frage in keinen anderen Forum gestellt.
> Nachdem Ihr mir bei meiner letzten Frage so gut geholfen
> habt, habe ich eine weitere Frage zu meine Problem:
>  
> Ich habe eine Summe aus Trigammafunktionen [mm]\psi_1:[/mm]
>  
> [mm]\frac{I}{4d^2h}\left[ \psi_1 \left( \frac{1}{2}+\frac{n}{2}-\frac{h}{d}I \right) - \psi_1 \left(\frac{1}{2}+\frac{n}{2}+\frac{h}{d}I \right) - \psi_1 \left(\frac{1}{2}-\frac{n}{2}-\frac{h}{d}I\right) +\psi_1 \left(\frac{1}{2}-\frac{n}{2}+\frac{h}{d}I\right) \right][/mm]
>      (*)
>  
> Dabei bezeichnet I die komplexe Einheit,
> h und d sind Parameter mit h,d [mm]\in \IR_+[/mm] , und n [mm]\in \IN.[/mm]
>  
> Nach den dahinterliegenden physikalischen Überlegungen
> müsste (*) identisch 0 sein. Ich versuche also zu zeigen,
> dass auch mathematisch gilt
>  
> (*) [mm]\equiv[/mm] 0
>  
> bisher habe ich versucht die Integraldarstellung der
> Trigammafunktion
>
> [mm]\psi_1(z)[/mm] = - [mm]\int_0^1 \frac{x^{z-1} \ln x}{1-x}dx[/mm]
>  
> in (*) einzusetzen. Dies führt mich aber nicht zu den
> gewünschten Ergebnis.
>
> Kann mir jemand von euch einen Tipp geben wie ich zu den
> gewünschten Ergebnis komme? Ist (*) [mm]\equiv[/mm] 0 überhaupt zu
> zeigen?
>  
> Gibt es ein gutes Skript oder Formelsammlung wo Sätze
> über die Di-und Trigamma oder allgemein Polygamma Funktion
> aufgelistet sind? Es sollte aber über das was in Wikipedia
> steht hinaus gehen.

[]Digital Library of Mathematical Function, Kap. 5.

Die Reflexionsformel steht aber schon in der Wikipedia, damit kannst du den 1. und 4. sowie den 2. und 3. Term zusammenfassen. Dann bleibt die Differenz zweier zueinander konjugiert komplexer Terme übrig, also ist das Ergebnis auf jeden Fall rein imaginär.  Das siehst du auch, indem du für die Sinusfunktionen im Nenner die Additionstheoreme anwendest und [mm] $\cos(ix) =\cosh [/mm] x$ benutzt.

  Viele Grüße
    Rainer

Bezug
        
Bezug
Trigamma-Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 08:26 Fr 20.04.2012
Autor: rainerS

Hallo Lyx!

Es gibt noch ein einfacheres Argument: als meropmorphe Funktion hat die Trigammafunktion in ganz [mm] $\IC$ [/mm] außer an ihren Polstellen die Eigenschaft [mm] $\psi_1(\overline{z})=\overline{\psi_1(z)}$. [/mm] Daher sind jeweils die beiden ersten und die beiden letzten Terme deiner Summe konjugiert komplex zueinander, und die ganze Summe hat den Realteil 0.

Aus den Cauchy-Riemann-DGLen folgt, dass der Imaginärteil konstant sein muss. Die Konstante kannst du durch Einsetzen irgendwelcher Werte für deine Konstanten bestimmen, z.B. $h=n=0$.

  Viele Grüße
     Rainer

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de