www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Trigonometr. Formeln, Potenzen
Trigonometr. Formeln, Potenzen < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Trigonometr. Formeln, Potenzen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:11 Mi 13.12.2006
Autor: Kampfhase

Aufgabe
Zeigen Sie: [mm] cos^{4} [/mm] (x) = [mm] \bruch{1}{8} [/mm] cos 4x + [mm] \bruch{1}{2} [/mm] cos 2x + [mm] \bruch{3}{8} [/mm]

Ich soll diese Aufgabe lösen. Bloss komm da irgendwie nicht ganz weiter ...

Also ich verwende die Formel von Moivre: (cos x + i*sin [mm] x)^{4} [/mm] = cos 4x + i*sin 4x;

Danach habe ich die Binomische Formel genommen und das ebenfalls aufgelöst: (cos x + i*sin [mm] x)^{4} [/mm] = ... = ( [mm] cos^{4} [/mm] x - [mm] 6*cos^{2} [/mm] x [mm] sin^{2} [/mm] x + [mm] sin^{4} [/mm] x )+ i* (4cos³ x sin x - sin³ x 4 cos x) ! Also aufgelöst und nach realteil und Imaginärteil geordnet !

Nun vergleiche ich die beiden Realteile: cos (4x) = [mm] cos^{4} [/mm] x - [mm] 6*cos^{2} [/mm] x [mm] sin^{2} [/mm] x + [mm] sin^{4} [/mm] x ! Da ersetz ich dann das sin²x noch mit (1-cos²x). Und dann müsste doch da jetzt mein gewünschtes Ergebnis rauskommen , oder ?
Leider klappt das irgendwie nicht ! Bin ich hierbei total auf dem falschen weg, bzw. hab nurn Rechenfehler drin ? Oder was mach ich falsch ? Bitte um irgendwelche Hilfe und Unterstützung ;-) !

Vielen Dank und Grüße :-) !


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Trigonometr. Formeln, Potenzen: Auf dem richtigen Weg
Status: (Antwort) fertig Status 
Datum: 11:29 Mi 13.12.2006
Autor: moudi


> Zeigen Sie: [mm]cos^{4}[/mm] (x) = [mm]\bruch{1}{8}[/mm] cos 4x +
> [mm]\bruch{1}{2}[/mm] cos 2x + [mm]\bruch{3}{8}[/mm]
>  Ich soll diese Aufgabe lösen. Bloss komm da irgendwie
> nicht ganz weiter ...
>  
> Also ich verwende die Formel von Moivre: (cos x + i*sin
> [mm]x)^{4}[/mm] = cos 4x + i*sin 4x;
>  
> Danach habe ich die Binomische Formel genommen und das
> ebenfalls aufgelöst: (cos x + i*sin [mm]x)^{4}[/mm] = ... = (
> [mm]cos^{4}[/mm] x - [mm]6*cos^{2}[/mm] x [mm]sin^{2}[/mm] x + [mm]sin^{4}[/mm] x )+ i* (4cos³
> x sin x - sin³ x 4 cos x) ! Also aufgelöst und nach
> realteil und Imaginärteil geordnet !
>  
> Nun vergleiche ich die beiden Realteile: cos (4x) = [mm]cos^{4}[/mm]
> x - [mm]6*cos^{2}[/mm] x [mm]sin^{2}[/mm] x + [mm]sin^{4}[/mm] x ! Da ersetz ich dann
> das sin²x noch mit (1-cos²x). Und dann müsste doch da jetzt
> mein gewünschtes Ergebnis rauskommen , oder ?
>  Leider klappt das irgendwie nicht ! Bin ich hierbei total
> auf dem falschen weg, bzw. hab nurn Rechenfehler drin ?
> Oder was mach ich falsch ? Bitte um irgendwelche Hilfe und
> Unterstützung ;-) !

Hallo Kampfhase

Du bist auf dem richtigen Weg aber noch nicht fertig!

Ich erhalte dann [mm] $\cos(4x)=8\cos^4(x)-8\cos^2(x)+1$ [/mm]
Analog erhält man [mm] $\cos(2x)=2\cos^2(x)-1$ [/mm]

Und jetzt kann mam einfach überprüfen, dass [mm] $\cos^4(x) [/mm] = [mm] \frac{1}{8}\cos(4x) +\frac{1}{2} \cos(2x) [/mm] + [mm] \frac{3}{8}$ [/mm]

mfG Moudi

>
> Vielen Dank und Grüße :-) !
>  



Bezug
                
Bezug
Trigonometr. Formeln, Potenzen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:00 Mi 13.12.2006
Autor: Kampfhase

Ah ja, gut ! Jetzt versteh ichs auch !

Danke nochmal !

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de