www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - Trigonometrie
Trigonometrie < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Trigonometrie: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:13 So 20.07.2008
Autor: mitex

Aufgabe
Auf einem Turm der Höhe $a$ ist ein Blitzableiter montiert, der in einer Entfernung $b$ vom Fußpunkt des Turmes unter dem Sehwinkel [mm] $\alpha$ [/mm] erscheint. Höhe $x$ des Blitzableiters?
$a = 20 [mm] m\, [/mm] b = 30 m,\ [mm] \alpha [/mm] = 3,8°$

Die Lösung lautet folgendermaßen:
tan ß = a/b = 20/30 = 0,6
ß = 33,7°

   - Bis hierher ist mir das klar.

x = [mm] b.tan.(\alpha [/mm] + [mm] \beta)-a [/mm] = 30tan(3,8°+33,7°)-20 = 3


Mein Ansatz war:

[mm] tan\beta [/mm] = a/b   ->   b = [mm] a/tan\beta [/mm]
[mm] tan\alpha [/mm] = [mm] x+a/tan\alpha [/mm]  ->  b = [mm] x+a/tan\alpha [/mm]

[mm] \bruch{x+a}{tan\alpha} [/mm] = [mm] \bruch{a}{tan\beta} [/mm]

x = [mm] \bruch {a.tan(\alpha - \beta)}{tan\beta} [/mm]


Kann mir die oben genannte Lösungsformel nicht wirklich erklären. Könnte mir diese bitte wer erläutern? Womöglich ist meine Zeichnung, die ich hier leider nicht hereinbringe, nicht o.k.


Gruß, mitex


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Trigonometrie: Antwort
Status: (Antwort) fertig Status 
Datum: 21:44 So 20.07.2008
Autor: angela.h.b.


> Auf einem Turm der Höhe a ist ein Blitzableiter montiert,
> der in einer Entfernung b vom Fußpunkt des Turmes unter dem
> Sehwinkel α erscheint. Höhe x der Blitzableiters?
>  a = 20 m, b = 30 m, [mm]\alpha[/mm] = 3,8°
>  Die Lösung lautet folgendermaßen:
>  tan ß = a/b = 20/30 = 0,6
>  ß = 33,7°
>  
> - Bis hierher ist mir das klar.
>  
> x = [mm]b.tan.(\alpha[/mm] + [mm]\beta)-a[/mm] = 30tan(3,8°+33,7°)-20 = 3

> Kann mir die oben genannte Lösungsformel nicht wirklich
> erklären. Könnte mir diese bitte wer erläutern? Womöglich
> ist meine Zeichnung, die ich hier leider nicht
> hereinbringe, nicht o.k.


Hallo,

ich kann hier auch keine Zeichnungen einstellen, aber ich versuche, Dir das Bild zu erklären:

Wir brauchen eine Wiese, auf welcher der Turm der Höhe a steht, die Turmspitze nennen wir T, den Fuß F und unseren Beobachtungspunkt ,
der 30 m von F entfernt auf der Wiese ist, B.

Ich denke, daß wir uns völlig einig sind, welches der Winkel [mm] \beta [/mm] ist: der Winkel im Dreieck BFT, welcher beim Beobachtungspunkt  B ist.

Nun ist der Blitzableiter der Höhe x auf dem Turm montiert, sein oberes Ende nennen wir E.

Der Winkel [mm] \alpha [/mm] liegt im Dreireck  BTE, und zwar auch am Beobachtungspunkt B. [mm] \alpha [/mm] liegt also direkt  über [mm] \beta. [/mm]

Für die Lösungsformel oben wird das Dreieck  BFE betrachtet. Der Winkel bei B ist [mm] \alpha+\beta, [/mm] und mit dessen Tangens wird gearbeitet.

Gruß v. Angela





Bezug
                
Bezug
Trigonometrie: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:03 So 20.07.2008
Autor: mitex


Hallo Angela, danke für deine schnelle Antwort.

Jetzt sehe ich es auch, hatte bei meiner Zeichnung den Sehwinkel 'über' deinem Punkt B gehabt, somit war der untere Teil des Dreiecks nicht ident.

Gruß, Mitex

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de