www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Statistik (Anwendungen)" - Tschebyscheff
Tschebyscheff < Statistik (Anwend.) < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Statistik (Anwendungen)"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Tschebyscheff: Vorzeichen
Status: (Frage) beantwortet Status 
Datum: 01:48 Sa 08.12.2007
Autor: Waldifee

Aufgabe
Ein Experte sagt Ihnen, dass der Wet einer Aktie (Wertänderung = Zufallsgröße X) zum Ende des Jahres wahrscheinlich 5 € über dem heutigen Wert liegen wird. Dies ist allerdings nur der Mittelwert seiner Schätzung. Außerdem geht er davon aus, dass der Aktienkurs mit maximal einprozentiger Wahrscheinlichkeit um mahr als 20 € fallen wird.

Zu welcher Schlussfolgerung über die Varianz kommen Sie, wenn Sie die Aussagen des Experten für wahr halten? Verwenden Sie die Ungleichung von Tschebyscheff!

Welches Vorzeichen stimmt?

Mittelwert = Erwartungswert
--> E(X)=5

P(|X-5| [mm] \ge [/mm] 25) [mm] \le [/mm] .01
P(|X-5| [mm] \ge [/mm] 25) [mm] \le Var(x)/25^2 [/mm] = .01

-> weil es heißt [mm] Var(x)/25^2 [/mm] = .01 gilt doch Var(X) = 6.25
Oder wäre es nicht sinnvoller zu sagen Var(X) [mm] \le [/mm] 6.25, denn die Wahrscheinlichkeit ist ja maximal 1 Prozent, kann ja aber auch kleiner werden?
Oder muss ich die 1 Prozent mindestens einschließen und sogar sagen
Var(X) [mm] \ge [/mm] 6.25

Ich betrachte Var(X) [mm] \le [/mm] 6.25 am sinnvollsten, was denkt ihr?


Danke im Voraus für eure lieben Antworten!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Tschebyscheff: Antwort
Status: (Antwort) fertig Status 
Datum: 02:52 Sa 08.12.2007
Autor: Zneques

Hallo,

die Ungleichung von Tschebyscheff liefert eine untere Grenze für Var(X).
(Man könnte erfahren, dass der Wert, um den die Aktie zu ein Prozent fällt, gegen [mm] \infty [/mm] geht. Somit hätte man eine unendlich große Varianz. )

D.h. 6,25 [mm] \le [/mm] Var(X) ist richtig

Wenn man nun jedoch das "maximal" wörtlich nimmt, müsste man stattdessen
[mm] P(|X-5|\ge 25)=0.01-c\le [/mm] 0.01 für [mm] 0\le c\le [/mm] 0.01 schreiben.
[mm] \Rightarrow 6,25-625*c\le [/mm] Var(x)
Dann ist Var(X) also größer als eine [mm] Zahl\le [/mm] 6,25.
Bzw. Var(X) ist größer oder kleiner 6,25. :)

Ciao.

Bezug
                
Bezug
Tschebyscheff: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 09:21 Sa 08.12.2007
Autor: Waldifee

Wäre das jetzt eine Multiple Multiple Choice, was würde ich den ankreuzen?

Var(x) [mm] \ge [/mm] 6.25
Var(x) [mm] \le [/mm] 6.25
Var(x) = 6.25
Es ist keine sinnvolle Aussage +ber die Varianz möglich!

DANKE!!!

Bezug
                        
Bezug
Tschebyscheff: Antwort
Status: (Antwort) fertig Status 
Datum: 13:02 Sa 08.12.2007
Autor: Zneques

Hallo,
Das die Varianz größer als eine Zahl ist, die 0 sein könnte (also [mm] 0\le [/mm] Var(x) ) hätte man auch ohne Expertentipp gewußt. Nach der Aussage ist somit, im Bezug auf die Varianz, nicht mehr bekannt als vorher.

Ciao

Bezug
                                
Bezug
Tschebyscheff: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:21 Sa 08.12.2007
Autor: Waldifee

Hallo nochmal!

also, ich bin zu dem Schluss gekommen, dass eigentlich keine sinnvolle Aussage über die Varianz zu treffen ist:
1. wenn ich richtigerweise [mm] P(|X-E(X)|\ge25)\le0.01 [/mm] eingebe und var(X)/25² mit 0.01 gleichsetze, kann ich logischerweise var(X)=6.25 folgern.
2. wenn ich hingegen, ebenfalls sinnvollerweise, das "maximal" dahingehend auslege, dass P(|X-....) schon [mm] \le0.01 [/mm] ist, und demzufolge, [mm] \le0.01 \le [/mm] var(X)/c², und nun die var(X) berechne, erhalte ich [mm] var(X)\ge [/mm] 6.25.
3. wenn ich aber den Term [mm] \le [/mm] , also "maximal" richtig einstufe und entsprechend auch kleinere Werte für P() eingebe, erhalte ich stehts ein Ergebnis mit var(X) [mm] \ge [/mm] immer kleiner werdende Zahlen, maximal jedoch 6.25, was mich wiederum zu dem Schluss kommen lassen kann, dass [mm] var(X)\le6.25 [/mm] ist.

Insofern, und dies ist auch eine Antwortmöglichkeit, würde ich darauf schließen, dass keine sinnhafte Aussage zu treffen ist.

Was sagts Du dazu? Freue mich auf deine Antwort, ich hoffe Du verstehst was ich meine =)

Bezug
                                        
Bezug
Tschebyscheff: Antwort
Status: (Antwort) fertig Status 
Datum: 02:56 So 09.12.2007
Autor: Zneques

Hallo,

bei 1. wolltest du sicher [mm] P(|X-E(X)|\ge25)=0.01 [/mm] schreiben. Abgesehen davon würde Tschebyscheff trotzdem nur zu der Ungleichung [mm] Var(X)\ge [/mm] 6.25 führen. (es ist einfach zu wenig über X bekannt um die Varianz exakt zu bestimmen)
das Ende von 3. könnte man in "...kann, dass [mm] Var(X)\le6.25 [/mm] sein kann." umformulieren.
Die Schlussfolgerung ist völlig ok so.

Ciao.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Statistik (Anwendungen)"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de