www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stochastik" - Tschebyscheff - Welche Ungleic
Tschebyscheff - Welche Ungleic < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Tschebyscheff - Welche Ungleic: Verständnisproblem
Status: (Frage) beantwortet Status 
Datum: 13:41 So 17.07.2005
Autor: happy13

Hallo,

hab da so meine Probleme mit den Ungleichungen von Tschebbyscheff! Eigentlich sollte der Aufgabentyp ja nicht so schwer zu lösen sein, aber ich komm nicht darauf welches System oder welcher Trick dahinter steckt.

Woher weiss ich welche der beiden Tschebyscheff Ungleichungen ich nehmen soll?

Den Sinn der Tschebyscheff Ungleichungen hab ich denke ich verstanden: Die Wahrscheinlichkeit, dass der Erwartungswert der Grundgesamtheit in einem Intervall liegt soll z.B. 95 % sein. Man sucht dann eben genau diesen Intervall. Richtig?

Z.B. folgende Aufgabe:

Der Produktionsleiter einesAutomobilkonzernsstellt in einer Stichprobenuntersuchung von 500 Autos fest, dass 24 Autos fehlerhaft lackiert sind.

Bestimmen sie unter Verwendung einer geeigneten Varianzschätzung ein 95 % Konfiidenzintervallfür den Anteil der fehlerhaft lackierten Autos der Gesamtproduktion.

Woher weiss ich welche Ungleichung ich nehmen muss?


Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt: http://www.matheboard.de/thread.php?threadid=19569

        
Bezug
Tschebyscheff - Welche Ungleic: Gelöstes Beispiel
Status: (Antwort) fertig Status 
Datum: 23:42 So 17.07.2005
Autor: BeniMuller

Hallo happy13

Für das Vertrauensintervall (Konfidenzintervall) gibt es eine ziemlich kompliziert aussehende Formel:

linke, untere Grenze

[mm] \bruch{1}{n+z_\alpha^2} \ (k \ + \ \bruch{z_\alpha^2}{2}) \ - \ z_\alpha \wurzel{\bruch{k(n-k)}{n} \ + \ \bruch{z_\alpha^2}{4} }[/mm]

rechte, obere Grenze

[mm] \bruch{1}{n+z_\alpha^2} \ (k \ + \ \bruch{z_\alpha^2}{2}) \ + \ z_\alpha \wurzel{\bruch{k(n-k)}{n} \ + \ \bruch{z_\alpha^2}{4} }[/mm]

[mm]n \ = \ [/mm] Anzahl Autos [mm] \ = \ 500 [/mm]
[mm]k \ = \ [/mm] Anzahl fehlerhaft lakiert [mm] \ = \ 24[/mm]
[mm]z_\alpha \ = \ [/mm] kritischer Wert bei 95% [mm] \ = \ 1.96 [/mm]

Wenn Du diese Zahlen einsetzt, bekommst Du die Grenzen des Vertrauensintervalls.

Hoffentlich hilft das weiter.

Gruss aus Zürich

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de