www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Numerik" - Tschebyscheffpolynom
Tschebyscheffpolynom < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Tschebyscheffpolynom: Gleeichung zeigen
Status: (Frage) beantwortet Status 
Datum: 20:38 Mo 17.03.2008
Autor: YO_zhik

Aufgabe
Die Gleichung lautet:
[mm] \integral_{}^{}{T_n(x) dx} [/mm] = [mm] \bruch{1}{2} [/mm] ( [mm] \bruch{T_{n+1}(x)}{n+1} [/mm] - [mm] \bruch{T_{n-1}(x)}{n-1}) [/mm] + C, n [mm] \ge [/mm] 2.

Wie kann man das zeigen? Kann man es mit [mm] T_n(x) [/mm] = cos [mm] (n\theta) [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Tschebyscheffpolynom: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 02:39 Mi 19.03.2008
Autor: MatthiasKr

Hi,
> Die Gleichung lautet:
>  [mm]\integral_{}^{}{T_n(x) dx}[/mm] = [mm]\bruch{1}{2}[/mm] (
> [mm]\bruch{T_{n+1}(x)}{n+1}[/mm] - [mm]\bruch{T_{n-1}(x)}{n-1})[/mm] + C, n
> [mm]\ge[/mm] 2.
>  Wie kann man das zeigen? Kann man es mit [mm]T_n(x)[/mm] = cos
> [mm](n\theta)[/mm]

wie habt ihr denn die Tscheb.-polynome eingefuehrt bzw. welche eigenschaften kennt ihr?

gruss
matthias

Bezug
                
Bezug
Tschebyscheffpolynom: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:23 Do 20.03.2008
Autor: YO_zhik

Hallo Matthias,

danke für deine Antwort :)

wir haben

[mm] T_n(x)=cos n\theta=cos [/mm] n(arccos x)
und die rekursionsformel [mm] T_{n+1}(x)=2xT_n(x) -T_{n-1}(x) [/mm]

Gruss
Anton

Bezug
        
Bezug
Tschebyscheffpolynom: Antwort
Status: (Antwort) fertig Status 
Datum: 11:30 Do 20.03.2008
Autor: blascowitz

Guten Morgen:
Also ich würde das per vollständiger Induktion über n beweisen. Den Induktionsanfang mach ich dir mal.

IA: n=2

Dann ist das Integral
[mm] \integral_{}^{}{T_{2}(x) dx}=\integral_{}^{}{2x*T_{1}(x)dx}-\integral_{}^{}{T_{0}(x) dx}=\integral_{}^{}{2x \cdot xdx}-\integral_{}^{}{1 dx}=\bruch{2}{3}x^3-x+c=\bruch{1}{2}\cdot(\bruch{4x^3-3x}{3}-\bruch{x}{1}) [/mm]
Das ist die Behauptung für n=2. Jetzt kannst du das als Induktionsvoraussetzung nehmen und dann das für
[mm] \integral_{}^{}{T_{n+1}(x) dx} [/mm] beweisen mithilfe der Rekursionsformel. Für das erste Integral einmal partielle Integration anwenden. Das zweite Integral kannst du mithilfe der Induktionsvoraussetzung lösen. So sollte das funktionieren


Bezug
                
Bezug
Tschebyscheffpolynom: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:27 Fr 21.03.2008
Autor: YO_zhik

Hallo blascowitz,

danke für deine Antwort!

Mit Induktion habe ich es auch versucht, bleibe aber bei

[mm] xT_{n+1}(x)-(T_n(x)(n+1))/n-1/2[T_{n+2}(x)/(n+2) [/mm] - [mm] T_n(x)/n] [/mm]

stecken...

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de