www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Induktion" - Türme von Hanoi
Türme von Hanoi < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Türme von Hanoi: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 11:14 So 28.10.2007
Autor: Sunsh1ne

Aufgabe
Ein bekanntes mathematisches Spiel ist der 'Turm von Hanoi'. Auf einem von frei Stäben sitzen n der Größe nach geordnete Scheiben, die kleinste oben. Die Aufgabe besteht darin, diese Scheiben auf einen der anderen Stäbe zu bringen, wobei folgende Regeln zu beachten sind:

1. In jedem Schritt darf nur eine Scheibe bewegt werden.
2. Nie darf eine größere Scheibe auf einer kleineren liegen.

Zeigen Sie mit vollständiger Induktion, dass man die aufgabe mit [mm] 2^n [/mm] -1
Schritten lösen kann.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Guten Morgen :)

Ich soll die Aufgabe bis morgen lösen, hab aber leider gar keinen Ansatz für die Lösung. Versteht einer von euch vielleicht, wie man hier vorgehen muss?
Bin für jeden Tip dankbar!

Viele Grüße, Sunny


        
Bezug
Türme von Hanoi: vorstellen
Status: (Antwort) fertig Status 
Datum: 20:55 So 28.10.2007
Autor: Loddar

Hallo Sunny!


Das eigentliche Prinzip der vollständigen Induktion ist aber klar, oder?


Bei dieser Aufgabe muss man sich klar machen, wie man eine Turm mit insgesamt $n_$ Scheiben vom Punkt $A_$ nach Punkt $B_$ schafft.

Dafür transportiere ich die obersten $n-1_$ Scheiben nach $C_$ , lege die unterste (= größte) Scheibe von [mm] $A\rightarrow [/mm] B$ . Und nun wiederum den $n-1_$-Scheiben-Turm von [mm] $C\rightarrow [/mm] B$ .

Damit habe ich also für einen Turm mit $n_$ Scheiben insgesamt $A(n-1)_$ (=Anzahl der Bewegungen zur Verschiebung eines Turmes mit $n-1_$ Scheiben) + 1 Bewegung für die größte Scheibe sowie wiederum $A(n-1)_$ Bewegungen vollzogen.

In rekursiver Drstellung bedeutet dies also:
$$A(n+1) \ = \ 2*A(n)+1$$

Es ist also nun mittels vollständiger Induktion zu zeigen, dass ich diese rekursive Vorschrift auch explizit als $A(n) \ = \ [mm] 2^n-1$ [/mm] darstellen kann.


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de