UMP-Test entwickeln < Stochastik < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 20:58 Sa 23.03.2013 | Autor: | logipech |
Aufgabe | Seien [mm] X_1 [/mm] ,..., [mm] X_n [/mm] unabhängig, identisch [mm] Exp(\lambda)-verteilte [/mm] ZV. Entwickeln Sie einen gleichmäßig besten Test (UMP-Test) [mm] \tilde{\phi} [/mm] zum Niveau [mm] \alpha\in [/mm] [0,1] für die Hypothesen [mm] H:\lambda\leq\lambda_0, K:\lambda>\lambda_0, [/mm] wobei [mm] \lambda>0. [/mm] |
Hallo zusammen. Um die Aufgabe zu lösen, habe ich Folgendes gemacht:
[mm] f_{\lambda} (x)=\lambda^n exp(-\lambda \hat{x}), \quad x_i [/mm] > [mm] 0,\quad\hat{x}:=\sum_{i=1}^{n}x_i [/mm] .
Ich möchte zeigen, dass ein monotoner Dichtequotient existiert, einen Test mit der passenden Statistik entwickeln und dieser Test ist nach einem Satz von uns dann UMP-Test.
Das Problem fängt jedoch hier schon an, da ich nicht weiß, was ich für [mm] x_i \leq [/mm] 0 machen soll. Dann ist [mm] f_{\lambda}(x)=0. [/mm] Ich ignoriere diesen Fall deshalb erst einmal und setze [mm] x_i>0 [/mm] voraus.
Sei meine Teststatistik [mm] t=T(x)=-\hat{x} [/mm] und [mm] \lambda_1>\lambda_0>0 [/mm] beliebig.
[mm] \frac{f_{\lambda_1}(x)}{f_{\lambda_0}(x)} [/mm] = [mm] \left(\frac{\lambda_1}{\lambda_0}\right)^n exp(\lambda_1-\lambda_0)^t.
[/mm]
In t ist dieser Quotient nun streng monoton steigend - wir haben also einen monotonen Dichtequotienten.
Der Test nach Neyman&Pearson hat jetzt die Form:
[mm] \tilde{\phi}(x)=\begin{cases}1,&t>\tilde{c},\\ \tilde{\gamma},&t=\tilde{c},\\ 0,&t<\tilde{c}\end{cases}
[/mm]
Wobei [mm] \tilde{c} [/mm] zu bestimmen ist, sodass die Fehlerwahrscheinlichkeiten minimiert werden.
Es muss gelten:
[mm] E_{\lambda_0}\tilde{\phi}(X)= P_{\lambda_0}(t>\tilde{c})+\tilde{\gamma}\cdot P_{\lambda_0}(t=\tilde{c})=\alpha.
[/mm]
Da wir absolut-stetige ZV haben, ist der rechte Teil Null, man kann also [mm] \tilde{\gamma}=1 [/mm] setzen.
Die Summe von n [mm] Exp(\lambda)-verteilten [/mm] ZV ist [mm] Gamma(\lambda, [/mm] n)-verteilt. Sei [mm] Z\sim Gamma(\lambda, [/mm] n).
Dann ist die Bedingung äquivalent zu [mm] P_{\lambda_0}(Z\leq -\tilde{c})=\alpha. [/mm]
Praktisch bestimmt man also hier [mm] (-\tilde{c}) [/mm] als das [mm] \alpha-Quantil [/mm] der [mm] Gamma(\lambda, [/mm] n)-Verteilung.
Der Test sieht nun so aus:
[mm] \tilde{\phi}(x)=\begin{cases}1,&-\sum_{i=1}^{n}x_i \geq \tilde{c},\\ 0,& sonst.\end{cases}. [/mm]
[mm] (-\tilde{c}) [/mm] ist das [mm] \alpha-Quantil [/mm] der [mm] Gamma(\lambda, [/mm] n)-Verteilung.
Dann ist nach einem Satz von uns [mm] \tilde{\phi} [/mm] UMP-Test zum Niveau [mm] \alpha [/mm] zu [mm] H:\lambda\leq \lambda_0, K:\lambda>\lambda_0 [/mm] .
1. Stimmt das so für [mm] x_i [/mm] > 0 ? Der Neyman-Pearson-Test ist ja für zwei "feste" Hypothesen [mm] \lambda_0, \lambda_1 [/mm] definiert und der Test funktioniert dann "plötzlich" auch für die angegebenen Hypothesen.
2. Was mache ich mit [mm] x_i \leq [/mm] 0 ?
3. Ich gebe jetzt noch den Satz zum monotonen Dichtequotienten an:
[mm] \{ P_{\theta,X} \}_{\theta\in\Theta}, \Theta\subset\IR^1 [/mm] Parameterraum, besitze monotonen Dichtequotienten in T=T(x). Dann gilt:
a) Für bel. [mm] \theta_0\in \Theta, \alpha\in [/mm] (0,1) ex. ein Test [mm] \tilde{\phi} [/mm] der Form
[mm] \tilde{\phi}=\begin{cases}1,&T(x)>\tilde{c},\\ \tilde{\gamma},&T(x)=\tilde{c},\\ 0,&T(x)<\tilde{c}\end{cases}
[/mm]
mit [mm] E_{\theta_0}\tilde{\phi}(X)=P_{\theta_0}(T(X)>\tilde{c})+\tilde{\gamma}P_{\theta_0}(T(X)=\tilde{c})=\alpha.
[/mm]
b) Die Gütefunktion [mm] \tilde{\beta}(\theta)=E_{\theta}\tilde{\phi}(X) [/mm] ist monoton wachsend.
c) [mm] \tilde{\phi} [/mm] ist UMP-Test zum Niveau [mm] \alpha [/mm] für [mm] H:\theta\leq\theta_0,\quad K:\theta>\theta_0.
[/mm]
Viele Grüße
logipech.
_________________________
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Hallo,
> Seien [mm]X_1[/mm] ,..., [mm]X_n[/mm] unabhängig, identisch
> [mm]Exp(\lambda)-verteilte[/mm] ZV. Entwickeln Sie einen
> gleichmäßig besten Test (UMP-Test) [mm]\tilde{\phi}[/mm] zum
> Niveau [mm]\alpha\in[/mm] [0,1] für die Hypothesen
> [mm]H:\lambda\leq\lambda_0, K:\lambda>\lambda_0,[/mm] wobei
> [mm]\lambda>0.[/mm]
> Hallo zusammen. Um die Aufgabe zu lösen, habe ich
> Folgendes gemacht:
>
> [mm]f_{\lambda} (x)=\lambda^n exp(-\lambda \hat{x}), \quad x_i[/mm]
> > [mm]0,\quad\hat{x}:=\sum_{i=1}^{n}x_i[/mm] .
OK.
> Ich möchte zeigen, dass ein monotoner Dichtequotient
> existiert, einen Test mit der passenden Statistik
> entwickeln und dieser Test ist nach einem Satz von uns dann
> UMP-Test.
Richtig.
> Das Problem fängt jedoch hier schon an, da ich nicht
> weiß, was ich für [mm]x_i \leq[/mm] 0 machen soll. Dann ist
> [mm]f_{\lambda}(x)=0.[/mm] Ich ignoriere diesen Fall deshalb erst
> einmal und setze [mm]x_i>0[/mm] voraus.
Das darfst du auch. Es muss ja nur
[mm] $\frac{f_{\lambda_1}(x)}{f_{\lambda_0}(x)} [/mm] = [mm] g_{\lambda_0, \lambda_1}(T(x))$ $P_{\lambda_1} [/mm] + [mm] P_{\lambda_0}-f.s.$
[/mm]
gelten ( mit einer monoton wachsenden Funktion [mm] $g_{\lambda_0, \lambda_1}$ [/mm] ).
Und der gesamte Bereich [mm] $x_i [/mm] < 0$, d.h. [mm] $\IR^{n} \backslash [0,\infty)^{n}$ [/mm] ist eine [mm] $P_{\lambda_1} [/mm] + [mm] P_{\lambda_0}$-Nullmenge, [/mm] weil die Exponentialverteilung nur Werten > 0 Wahrscheinlichkeitsmasse zuordnet.
> Sei meine Teststatistik [mm]t=T(x)=-\hat{x}[/mm] und
> [mm]\lambda_1>\lambda_0>0[/mm] beliebig.
> [mm]\frac{f_{\lambda_1}(x)}{f_{\lambda_0}(x)}[/mm] =
> [mm]\left(\frac{\lambda_1}{\lambda_0}\right)^n exp(\lambda_1-\lambda_0)^t.[/mm]
>
> In t ist dieser Quotient nun streng monoton steigend - wir
> haben also einen monotonen Dichtequotienten.
Genau.
> Der Test nach Neyman&Pearson hat jetzt die Form:
> [mm]\tilde{\phi}(x)=\begin{cases}1,&t>\tilde{c},\\
\tilde{\gamma},&t=\tilde{c},\\
0,&t<\tilde{c}\end{cases}[/mm]
>
> Wobei [mm]\tilde{c}[/mm] zu bestimmen ist, sodass die
> Fehlerwahrscheinlichkeiten minimiert werden.
Naja, es muss eben gelten, was du hier gleich schreibst:
> Es muss gelten:
> [mm]E_{\lambda_0}\tilde{\phi}(X)= P_{\lambda_0}(t>\tilde{c})+\tilde{\gamma}\cdot P_{\lambda_0}(t=\tilde{c})=\alpha.[/mm]
Dein Satz unten garantiert dann, dass der resultierende Test den Fehler 2. Art minimiert.
> Da wir absolut-stetige ZV haben, ist der rechte Teil Null,
> man kann also [mm]\tilde{\gamma}=1[/mm] setzen.
Genau.
> Die Summe von n [mm]Exp(\lambda)-verteilten[/mm] ZV ist
> [mm]Gamma(\lambda,[/mm] n)-verteilt. Sei [mm]Z\sim Gamma(\lambda,[/mm] n).
> Dann ist die Bedingung äquivalent zu [mm]P_{\lambda_0}(Z\leq -\tilde{c})=\alpha.[/mm]
Ja.
> Praktisch bestimmt man also hier [mm](-\tilde{c})[/mm] als das
> [mm]\alpha-Quantil[/mm] der [mm]Gamma(\lambda,[/mm] n)-Verteilung.
Ja.
> Der Test sieht nun so aus:
> [mm]\tilde{\phi}(x)=\begin{cases}1,&-\sum_{i=1}^{n}x_i \geq \tilde{c},\\
0,& sonst.\end{cases}.[/mm]
> [mm](-\tilde{c})[/mm] ist das [mm]\alpha-Quantil[/mm] der [mm]Gamma(\lambda,[/mm]
> n)-Verteilung.
Ja.
> Dann ist nach einem Satz von uns [mm]\tilde{\phi}[/mm] UMP-Test zum
> Niveau [mm]\alpha[/mm] zu [mm]H:\lambda\leq \lambda_0, K:\lambda>\lambda_0[/mm]
> .
>
> 1. Stimmt das so für [mm]x_i[/mm] > 0 ? Der Neyman-Pearson-Test ist
> ja für zwei "feste" Hypothesen [mm]\lambda_0, \lambda_1[/mm]
> definiert und der Test funktioniert dann "plötzlich" auch
> für die angegebenen Hypothesen.
Richtig, das sog. "Fundamentallemma von Neyman-Pearson" ist nur für Hypothesen der Form
$H: [mm] \lambda [/mm] = [mm] \lambda_0$ [/mm] gegen $K: [mm] \lambda [/mm] = [mm] \lambda_1$.
[/mm]
Erst dein unten zitierter Satz erweitert die Aussage des Fundamentallemmas für die Hypothesen
$H: [mm] \lambda \le \lambda_0$ [/mm] gegen $K: [mm] \lambda [/mm] > [mm] \lambda_1$.
[/mm]
Das passiert also nicht "plötzlich", sondern ist ein eigenständiger Satz.
> 2. Was mache ich mit [mm]x_i \leq[/mm] 0 ?
s.o. das hat keine Relevanz. Die Fälle mit [mm] $x_i \le [/mm] 0$ sind Nullmengen.
Viele Grüße,
Stefan
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 23:59 Sa 23.03.2013 | Autor: | logipech |
Vielen Dank für deine rasche Antwort. Hat mir sehr geholfen.
Viele Grüße
logipech.
|
|
|
|