www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mengenlehre" - Ultrafilter
Ultrafilter < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ultrafilter: Ultrafilter <=> maximal
Status: (Frage) überfällig Status 
Datum: 11:40 Fr 22.04.2011
Autor: algieba

Aufgabe 1
Sei I eine Menge und [mm] $F\subset \mathcal{P}(I)$ [/mm] (Potenzmenge)

F ist ein Ultrafilter [mm] $\Leftrightarrow$ [/mm] F ist maximaler Filter

Aufgabe 2
Wenn F Ultrafilter ist, dann gilt: [mm] $A\cup [/mm] B [mm] \in [/mm] F [mm] \Rightarrow A\in [/mm] F$ oder [mm] $B\in [/mm] F$

Hi

Zur Erinnerung:
F ist ein Filter auf I gdw. :
1) [mm] $\emptyset \notin [/mm] F$
2) wenn $X,Y [mm] \in [/mm] F$ dann auch [mm] $X\cap [/mm] Y [mm] \in [/mm] F$
3) wenn [mm] $X\in [/mm] F$ und [mm] $Y\supseteq [/mm] X$ dann ist [mm] $Y\in [/mm] F$

F ist Ultrafilter gdw. :
1) Für alle $X [mm] \subseteq [/mm] I$ ist entweder $X$ oder [mm] $I\backslash [/mm] X$ in F


Mir fehlt leider bei beiden Aufgaben der Ansatz. Könnte mir da jemand einen Tipp geben?

Vielen Dank



        
Bezug
Ultrafilter: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:21 Mi 27.04.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Ultrafilter: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 16:34 Do 28.04.2011
Autor: algieba

Aufgabe
Sei S eine Menge und [mm] $\mathcal{D}\subset \mathcal{P}(I)$ [/mm] (Potenzmenge)

[mm] $\mathcal{D}$ [/mm] ist ein Ultrafilter [mm] $\Leftrightarrow$ $\mathcal{D}$ [/mm] ist maximaler Filter

Hi

Ich habe jetzt doch Lösungen gefunden, vielleicht könnte da mal jemand drübergucken und eventuelle Fehler aufdecken?
Ich mache für jede Aufgabe eine eigene Frage damit sie einzeln überprüft werden können!

[mm] "$\Rightarrow$" [/mm]
[mm] $\mathcal{D}$ [/mm] ist Ultrafilter, und sei [mm] $A\subseteq [/mm] S$ und OE [mm] $A\in \mathcal{D}$. [/mm]
Sei [mm] $\mathcal{E}$ [/mm] ein Filter mit [mm] $\mathcal{D}\subseteq \mathcal{E}$ [/mm]
Wir nehmen an, dass [mm] $\mathcal{E} \backslash \mathcal{D} \neq \emptyset$, [/mm] und $B [mm] \in \mathcal{E} \backslash \mathcal{D}$. [/mm]
Da [mm] $\mathcal{E}$ [/mm] Filter und $A,B [mm] \in \mathcal{E}$ [/mm] muss gelten: [mm] $A\cap [/mm] B [mm] \in \mathcal{E}$, [/mm] aber [mm] $A\cap [/mm] B = [mm] \emptyset$ [/mm] (Widerspruch dazu, dass die leere Menge nicht in einem Filter enthalten sein darf)
[mm] $\Rightarrow \mathcal{E} \backslash \mathcal{D} [/mm]  = [mm] \emptyset$ [/mm]
[mm] $\Rightarrow \mathcal{E} [/mm] = [mm] \mathcal{D}$ [/mm]
[mm] $\Rightarrow \mathcal{D}$ [/mm] maximal


[mm] "$\Leftarrow$" [/mm] will ich hier nicht zeigen, da ich das in einem Buch gefunden habe, müsste also richtig sein


Vielen Dank


Bezug
                
Bezug
Ultrafilter: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:24 So 01.05.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Ultrafilter: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 16:44 Do 28.04.2011
Autor: algieba

Aufgabe
Wenn [mm] $\mathcal{D}$ [/mm] Ultrafilter ist, dann gilt: [mm] $A\cup [/mm] B [mm] \in \mathcal{D} \Rightarrow A\in \mathcal{D}$ [/mm] oder [mm] $B\in \mathcal{D}$ [/mm]

Es gilt [mm] $A\cup [/mm] B [mm] \in \mathcal{D}$ [/mm]
Sei OE $A [mm] \notin \mathcal{D}$ [/mm]
[mm] $\Rightarrow S\backslash [/mm] A [mm] \in \mathcal{D}$ [/mm]
Da [mm] $\mathcal{D}$ [/mm] Filter muss gelten:
[mm] $(S\backslash [/mm] A) [mm] \cap (A\cup [/mm] B) = B [mm] \backslash [/mm] A [mm] \in \mathcal{D}$ [/mm]
Da $(B [mm] \backslash [/mm] A) [mm] \subset [/mm] B$ folgt $B [mm] \in \mathcal{D}$ [/mm]

Jetzt bin ich mir nicht sicher ob ich noch zeigen muss, dass auch beide (also A UND B) in $ [mm] \mathcal{D}$ [/mm] enthalten sein können. Das wäre nicht sehr schwer, aber ist das überhaupt nötig?

Vielen Dank

Bezug
                
Bezug
Ultrafilter: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:24 So 01.05.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de