www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - Umformung
Umformung < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Umformung: Zwischenschritte gesucht
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 08:48 Di 06.05.2008
Autor: ThermoTim

Aufgabe
Ausgehend von der Fourierschen DGl. für 1-dim. Wärmeleitung in einer Kugel mit innerer Wärmequelle ist:

[mm] \bruch{d^{2}t}{dr^2}+\bruch{2 dt}{r dr}+\bruch{q}{\lambda}=0 [/mm]

mit t als Temperatur, r als Kugelradius, qPUNKT als volumenspezifische Wärmestromdichte und lambda als Wärmeleitkoeffizient.

Durch Umformung soll man erhalten:

[mm] \bruch{1}{r^2} \bruch{d}{dr} (r^2 \bruch{dt}{dr})+\bruch{q}{\lambda}=0 [/mm]

Wie lauten die einzelnen Zwischenschritte und nach welchen Regeln werden sie vorgenommen.

Ziel: Anschließend zweimal Variablentrennung und Integration, um zur Formel des Temperaturfeldes zu gelangen, was aber klar ist. (Nur so als Hinweis gedacht)

Danke Euch!

ThermoTim

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Umformung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:25 Di 06.05.2008
Autor: wauwau

Leite einfach den zweiten umgeformten Term nach der Produktregel ab und du erhältst den Ausgangsterm....

Bezug
        
Bezug
Umformung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:57 Di 06.05.2008
Autor: ThermoTim

Vielen Dank!

Aber das war nur ein Beispiel, bei dem die Lösung der Umformung schon bekannt ist. Ich wollte gern eine allgemein gültige Herangehensweise für ähnlich gelagerte Probleme mit gleicher Struktur erarbeiten, bei dem die Lösung der Umformung eben noch nicht bekannt ist.  Mir scheint das Ausklammern von [mm] \bruch{1}{r^2} [/mm] der erste Schritt zu sein. Nur wie dann weiter. Erfahrungssache, oder?

Viele Grüße

ThermoTim

Bezug
                
Bezug
Umformung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:33 Di 06.05.2008
Autor: MathePower

Hallo ThermoTim,

> Vielen Dank!
>
> Aber das war nur ein Beispiel, bei dem die Lösung der
> Umformung schon bekannt ist. Ich wollte gern eine allgemein
> gültige Herangehensweise für ähnlich gelagerte Probleme mit
> gleicher Struktur erarbeiten, bei dem die Lösung der
> Umformung eben noch nicht bekannt ist.  Mir scheint das
> Ausklammern von [mm]\bruch{1}{r^2}[/mm] der erste Schritt zu sein.
> Nur wie dann weiter. Erfahrungssache, oder?

Von dieser DGL ausgehend:

[mm]\bruch{d^{} t}{dr^{2}}+a\left(r\right)*\bruch{dt}{dr}+c=0[/mm]

Allgemein soll man auf diese Struktur kommen:

[mm]\bruch{1}{f}\bruch{d}{dr}\left(f*\bruch{dt}{dr}\right)+c=0[/mm]

Demnach vergleichst Du

[mm]\bruch{1}{f}\bruch{d}{dr}\left(f*\bruch{dt}{dr}\right)=\bruch{d^{} t}{dr^{2}}+a\left(r\right)*\bruch{dt}{dr}[/mm]

Damit erhältst Du eine neue DGL für f.

>  
> Viele Grüße
>  
> ThermoTim

Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de