www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Schul-Analysis" - Umformung
Umformung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Umformung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:47 Mo 17.05.2004
Autor: Linda

Ich habe ein großes Problem, bei einer Umformung, die ich morgen erklären soll:
V''(r)=2(piH/3R)R-6(piH/3R)*(2/3)R
       =2(piH/3R)R*(1-3*(2/3))
       =2(piH/3R)R*(-1)
       =-(2(piH/3R)R)

Ich verstehe einfach nicht den Schritt zwischen der ersten und zweiten Zeile. Ich weiß nur, dass es etwas mit ausklammern ist. Aber wo ist das zweite piH geblieben? Es wäre echt nett, wenn mir dabei jemand helfen könnte.
Danke im voraus.
Linda

        
Bezug
Umformung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:50 Mo 17.05.2004
Autor: Paulus

Hallo Linda

Willkommen im Matheraum! :-)

Ich sag einmal ein Paar wenige Sachen zum Ausklammern.

Kennst du das Distributivgesetz?

Es lautet so: $a*(b+c) = a*b + a*c$

Du kannst es auch von rechts nach links lesen (oder notieren):

$a*b + a*c  = a*(b+c)$

... und schon hat sich das Distributivgesetz zum Gesetz über das Ausklammern gewandelt!

Ich schreibe es noch ein Wenig anders hin (warum, siehst du vielleicht etwas weiter unten):

$A*b + A*c  = A*(b+c)$

Jetzt die Frage: wie kommt man von der linken Seite des Gleichheitszeichens zum Ausdruck auf der rechten Seite?

Du musst überprüfen, ob bei den Summanden linkerhand ein gemeinsamer Faktor vorkommt. hier ist das tatsächlich der Fall: A kommt bei beiden Summanden als Faktor vor.

Jetzt schau auf die rechte Seite der Gleichung: diesen gemeinsamen Faktor siehst du jetzt vor der Klammer. Und in der Klammer?

In der Klammer stehen immer noch 2 Summanden, aber jeder ist durch Dividieren durch den gemeinsamen Faktor entstanden:

$A*b+A*c = [mm] A*(\bruch{A*b}{A} [/mm] + [mm] \bruch{A*c}{A}) [/mm] = A*(b+c)$

Dabei hat sich beim Dividieren das "A" weggekürzt.

Als weiteres Beispiel, das oft falsch gemacht wird, das Folgende:

$a+ab = a*(1+b)$

Viele Schüler vergessen hier gerne die 1 in der Klammer. Das passiert dir aber nicht, weil du jetzt weisst, dass in der Klamemr die einzelnen Summanden durch Dividieren entstehen. Ausfühlich nochmals:

$a+ab = [mm] a*(\bruch{a}{a}+\bruch{a*b}{a}) [/mm] = a*(1+b)$

Warum habe ich weiter oben ein grosses A genommen?

Um deutlich zu machen, dass für dieses A nicht eine einfache Zahl genommen werden muss, sondern dafür kann ein ganz komplizierter, unübersichtlicher Ausdruck  stehen! (A ist die Abkürzung für Ausdruck;-))

Und jetzt zu deinem Beispiel:


>  V''(r)=2(piH/3R)R-6(piH/3R)*(2/3)R
>         =2(piH/3R)R*(1-3*(2/3))

[mm] $2(\pi *H/R)*R-6(\pi [/mm] *H/R)*(2/3)*R$

kann noch ein Wenig umgeformt werden:

[mm] $2(\pi *H/R)*R-6*(\pi [/mm] *H/R)*(2/3)*R = $
[mm] $2(\pi *H/R)*R-2*3*(\pi [/mm] *H/R)*(2/3)*R = $
[mm] $2(\pi *H/R)*R-2*(\pi [/mm] *H/R)*R*3*(2/3)$

Und jetzt erkennst du vielleicht, dass mein obiges A eben einen recht komplizierten Aufbau hat:

[mm] $2(\pi [/mm] *H/R)*R$

Wenn ich mal, um die Rechnung etwas einfacher zu gestalten, folgende Substitution vornehme:

$A = [mm] 2(\pi [/mm] *H/R)*R$

dann erhält deine Gleichung das folgende Aussehen:

[mm] $2(\pi *H/R)*R-2*(\pi [/mm] *H/R)*R*3*(2/3) = $
$A - A*3*(2/3)$

Und hier kannst du A ausklammern:

$A - A*3*(2/3) = A*(1-3*(2/3)) = A*(1-2) = A*(-1)=-A$

Wenn du jetzt die Substitution wieder rückgängig machst, erkennst du die
obige Formel wieder:

$-A = [mm] -2(\pi [/mm] *H/R)*R$

Uebrigens: hier kann das $R$ noch weggekürzt werden:

$  [mm] -2(\pi [/mm] *H/R)*R = [mm] -2*\pi [/mm] * H$

Dieses Kürzen hätte ich übrigens bereits auf der 1. Zeile deiner Rechnung gemacht. Oder noch weiter oben? ;-)

Vielleicht schickst du uns noch die ganze Aufgabe, damit wir den gnzen Weg kontrollieren und Verbesserungsvorschläge machen können? :-)

Liebe Grüsse



Bezug
        
Bezug
Umformung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:21 Mo 17.05.2004
Autor: Linda

Vielen Dank erstmal für die Erklärung, das hat mir wirklich sehr geholfen. Aber bei dem Kürzen, bin ich mir nicht sicher, ob Sie nicht etwas übersehen haben, Sie haben nämlich geschrieben:
-2(pi*H/R)*R=-2*pi*H

aber in meiner Aufgabe heisst es leider:
-2(piH/3R)R

Kann man da auch kürzen?
Linda

Bezug
                
Bezug
Umformung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:16 Mo 17.05.2004
Autor: Paulus

Hallo Linda

zunächst mal: es ist üblich, dass wir in diesem Forum per du sind. Du brauchst also niemanden mit Sie anzusprechen!

> Vielen Dank erstmal für die Erklärung, das hat mir wirklich
> sehr geholfen. Aber bei dem Kürzen, bin ich mir nicht
> sicher, ob Sie nicht etwas übersehen haben, Sie haben
> nämlich geschrieben:
>  -2(pi*H/R)*R=-2*pi*H
>  
> aber in meiner Aufgabe heisst es leider:
>  -2(piH/3R)R

>
Oh ja, da ist mir die 3 im Nenner entwischt! Das ist ein Flüchtigkeitsfehler von mir. Wegkürzen lässt sich selbstverständlich nur das $R$

Es heisst also:
[mm] $-2*(\pi [/mm] *H/3*R)*R = [mm] -2*\pi [/mm] * H/3$

Bitte überprüfe den Rest meiner Herleitung auch noch ganz genau! Ich habs noch nicht gemacht! Ich muss gleich weg und bin frühestens in einer Stunde wieder hier! :-)

Vile Erfolg bei eurem Vortrag...

und wie gesagt, wenn ihr noch etwas dazu überprüfen lassen wollt, so meldet euch einfach!

Mit lieben Grüssen


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de