www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Komplexe Zahlen" - Umformung Fourier-Koeffizient
Umformung Fourier-Koeffizient < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Umformung Fourier-Koeffizient: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:04 Mo 13.10.2014
Autor: bla234

Aufgabe
Gesucht Fourier-Reihe der Funktion
[mm] f(x)=e^{-x}, 0\le [/mm] x < 2

[mm] c_{k}=... =\bruch{1}{2(1+ik\pi)}(e^{-2(1+ik\pi)}-1)=\bruch{1-e^{-2}}{2(1+ik\pi)}=... [/mm]

Dies ist aus einem Skript und ich versuche mich durchzuackern.
Leider kann ich nicht nachvollziehen wie hier umgeformt wurde.

        
Bezug
Umformung Fourier-Koeffizient: Antwort
Status: (Antwort) fertig Status 
Datum: 21:38 Mo 13.10.2014
Autor: Valerie20


> Gesucht Fourier-Reihe der Funktion
> [mm]f(x)=e^{-x}, 0\le[/mm] x < 2

>

> [mm]c_{k}=... =\bruch{1}{2(1+ik\pi)}(e^{-2(1+ik\pi)}-1)=\bruch{1-e^{-2}}{2(1+ik\pi)}=...[/mm]

>

> Dies ist aus einem Skript und ich versuche mich
> durchzuackern.
> Leider kann ich nicht nachvollziehen wie hier umgeformt
> wurde.

[mm]e^{-2\cdot(1+ik\pi)}=e^{-2-i2k\pi}=e^{-2}\cdot \underbrace{e^{-i2k\pi}}_{1}=e^{-2}[/mm]

Um auf obiges zu kommen, habe ich ganz einfach ein Potenzgesetz verwendet, das du in mit Sicherheit in deiner Formelsammlung findest. Verstehst du, warum der andere Ausdruck gleich 1 ist? 
Wenn nicht, darfst du gerne nochmal nachfragen.

Meiner bescheidenen Meinung nach sollte es daher lauten:

[mm]\bruch{\red{e^{-2}-1}}{2(1+ik\pi)}=...[/mm]

Valerie

Bezug
                
Bezug
Umformung Fourier-Koeffizient: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:29 Mo 13.10.2014
Autor: bla234

Ist das so richtig?
[mm] e^{-i2k\pi} [/mm] = [mm] \underbrace{cos(2k\pi)}_{=1} [/mm] -i [mm] \underbrace{sin(2k\pi)}_{=0} [/mm]

Danke schon mal.

Bezug
                        
Bezug
Umformung Fourier-Koeffizient: Antwort
Status: (Antwort) fertig Status 
Datum: 23:28 Mo 13.10.2014
Autor: leduart

Hallo
ja richtig, aber [mm] e^{i\phi} [/mm] sollte man auch auf dem Einheitskreis direkt sehen.
Gruß leduart

Bezug
                        
Bezug
Umformung Fourier-Koeffizient: Antwort
Status: (Antwort) fertig Status 
Datum: 00:42 Di 14.10.2014
Autor: Marcel

Hallo,

> Ist das so richtig?
>  [mm]e^{-i2k\pi}[/mm] = [mm]\underbrace{cos(2k\pi)}_{=1}[/mm] -i
> [mm]\underbrace{sin(2k\pi)}_{=0}[/mm]

Leduart hat es ja schon bestätigt, aber das, was von Leduart zudem gesagt
wird, solltest Du Dir anschaulich klarmachen:

Es ist (für [mm] $\varphi \in \IR$) [/mm]

    [mm] $e^{i \varphi}=\cos(\varphi)+i*\sin(\varphi)$ [/mm]

(das würde auch für [mm] $\varphi \in \IC$ [/mm] gelten - beim Folgenden kommt [mm] $\varphi \in \IR$ [/mm] zum Einsatz)

und man kann $x+i*y [mm] \in \IC=\IR+i*\IR$ [/mm] vermöge

    $z=x+i*y [mm] \mapsto [/mm] (x,y) [mm] \in \IR^2$ [/mm]

identifizieren. D.h. für [mm] $\varphi \in \IR$: [/mm]
Identifiziere

    [mm] $\cos(\varphi)+i*\sin(\varphi)$ [/mm]

mit

    [mm] $(\cos(\varphi),\;\sin(\varphi)) \in \IR^2\,.$ [/mm]
(Beachtenswert sind dabei auch andere Eigenschaften, nämlich der Betrag
einer Zahl $x+i*y [mm] \in \IC$ [/mm] berechnet sich als [mm] $\sqrt{x^2+y^2}\,,$ [/mm] ebenso wie die
euklidische Norm [mm] $\|(x,y)\|_2=\sqrt{x^2+y^2}$ [/mm] des korrespondierenden Punktes $(x,y) [mm] \in \IR^2\,$... [/mm]
Das meinte Leduart damit, dass man [mm] $e^{i \varphi}$ [/mm] auch direkt auf der Einheitskreislinie
in [mm] $\IC$ [/mm] erkennen können sollte...)

Gruß,
  Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de