www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Komplexe Zahlen" - Umformung arctan
Umformung arctan < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Umformung arctan: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:35 Sa 16.07.2011
Autor: sh4nks

Aufgabe
Gesucht ist der Winkel der komplexen Zahl [mm] \bruch{j*a - 1}{j*a + 1} [/mm] .
Dieser Term ist gleich φ(a - 1) -φ(a + 1) = π - 2*arctan (a)



Allgemein werden ja bei einer Division von komplexen Zahlen die Winkel subtrahiert. Aus Geometrie folgt φ= 2* arctan b . Das geht für b-> 0 gegen π.

Könnte mir jemand die zugrundeliegende Umformungsformel erklären? Gilt arctan φ= π -arctanφ?

Vielen Dank schon mal :)

        
Bezug
Umformung arctan: Antwort
Status: (Antwort) fertig Status 
Datum: 11:05 Sa 16.07.2011
Autor: Al-Chwarizmi


> Gesucht ist der Winkel der komplexen Zahl [mm]\bruch{j*a - 1}{j*a + 1}[/mm]

>  Dieser Term ist gleich φ(a - 1) -φ(a + 1) = π - 2*arctan (a)
>  Könnte mir jemand die zugrundeliegenden Umformungsformeln
> erklären? Das Problem stammt aus einer Altklausur in
> Elektrotechnik I (ich studiere Maschinenbau), und das
> Ergebnis ist ohne weitere Erläuterung angegeben.


Hallo sh4nks,

ich verstehe diese Umformung, so wie sie dasteht,
auch nicht. Insbesondere ist mir nicht klar, welche
Funktion dann mit [mm] \Phi [/mm] gemeint sein soll.

Vermutlich sollte der Zwischenschritt aber so aussehen:

      $\ [mm] \Phi(j*a [/mm] - 1)\ -\ [mm] \Phi(j*a [/mm] + 1)$

Dann wird klar: mit [mm] \Phi(z) [/mm] ist der Polarwinkel (das "Argument")
einer komplexen Zahl $\ z$ gemeint.  Und es gilt ja:

       $\ [mm] arg\left(\frac{z_1}{z_2}\right)\ [/mm] =\ [mm] arg(z_1)-arg(z_2)$ [/mm]

Die Argumente von Zähler und Nenner in dem Beispiel
kannst du mit einer einfachen Überlegung mit dem
Tangens bestimmen. (rechtwinklige Dreiecke !)

LG   Al-Chw.



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de