Umformungen < Rationale Funktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Aufgabe | Zeigen Sie, dass die Fkt. [mm] f_{4}(x)=\bruch{(x-1)^2(x+4)}{(x+4)(x+2)} [/mm] durch die Gleichung [mm] y=f_{4}(x)=x-4+\bruch{9}{x+2} [/mm] beschrieben werden kann. |
Ich komme hier einfach nicht weiter. Ich gehe von der 1. Fkt. aus und versuche diese Umzuformen. Dann komme ich gerade soweit, dass ich (x+4) kürzen kann und dann noch [mm] f(x)=\bruch{(x-1)^2}{x+2} [/mm] habe.
Aber ich weiß einfach nicht, wie ich dann weiter machen soll. Eine Hilfe wäre hier wirklich nicht schlecht und vielleicht auch generell ein Tipp, wie ich hier in Zukunft bei solchen Aufgaben die Lösung finde.
Danke schon mal.
LG Leni-chan
|
|
|
|
Hallo Leni-chan!
> Zeigen Sie, dass die Fkt.
> [mm]f_{4}(x)=\bruch{(x-1)^2(x+4)}{(x+4)(x+2)}[/mm] durch die
> Gleichung [mm]y=f_{4}(x)=x-4+\bruch{9}{x+2}[/mm] beschrieben werden
> kann.
> Ich komme hier einfach nicht weiter. Ich gehe von der 1.
> Fkt. aus und versuche diese Umzuformen. Dann komme ich
> gerade soweit, dass ich (x+4) kürzen kann und dann noch
> [mm]f(x)=\bruch{(x-1)^2}{x+2}[/mm] habe.
> Aber ich weiß einfach nicht, wie ich dann weiter machen
> soll. Eine Hilfe wäre hier wirklich nicht schlecht und
> vielleicht auch generell ein Tipp, wie ich hier in Zukunft
> bei solchen Aufgaben die Lösung finde.
Keine Ahnung, ob es einfacher geht, aber eine Sache, die immer funktionieren müsste, ist Polynomdivision. Multipliziere dazu Zähler und Nenner aus und mache dann Polynomdivision. Du hast dann:
[mm] (x^3+2x^2-7x+4):(x^2+6x+8)
[/mm]
Da erhältst du dann x-4 plus einen Restterm. Der Restterm ist: 9x+36, also musst du diesen Teil auch noch durch [mm] (x^2+6x+8) [/mm] teilen. Wenn du das etwas anders schreibst, kannst du es so kürzen, dass das rauskommt, was du brauchst: [mm] \frac{9x+36}{x^2+6x+8}=\frac{9(x+4)}{(x+4)(x+2)}=\frac{9}{x+2}.
[/mm]
Und ich sehe gerade, dass du auch nach dem Kürzen von (x+4), wie du es hier gemacht hast, einfach noch Polynomdivision machen kannst. Das dürfte wohl einfacher sein, aber für den allgemeinen Fall, wenn du vorher nichts kürzen kannst, kannst du es so machen, wie oben beschrieben.
Viele Grüße
Bastiane
|
|
|
|