www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Rationale Funktionen" - Umformungen
Umformungen < Rationale Funktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Umformungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:48 Sa 24.02.2007
Autor: Leni-chan

Aufgabe
Zeigen Sie, dass die Fkt. [mm] f_{4}(x)=\bruch{(x-1)^2(x+4)}{(x+4)(x+2)} [/mm] durch die Gleichung [mm] y=f_{4}(x)=x-4+\bruch{9}{x+2} [/mm] beschrieben werden kann.

Ich komme hier einfach nicht weiter. Ich gehe von der 1. Fkt. aus und versuche diese Umzuformen. Dann komme ich gerade soweit, dass ich (x+4) kürzen kann und dann noch [mm] f(x)=\bruch{(x-1)^2}{x+2} [/mm] habe.
Aber ich weiß einfach nicht, wie ich dann weiter machen soll. Eine Hilfe wäre hier wirklich nicht schlecht und vielleicht auch generell ein Tipp, wie ich hier in Zukunft bei solchen Aufgaben die Lösung finde.
Danke schon mal.

LG Leni-chan

        
Bezug
Umformungen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:03 Sa 24.02.2007
Autor: Bastiane

Hallo Leni-chan!

> Zeigen Sie, dass die Fkt.
> [mm]f_{4}(x)=\bruch{(x-1)^2(x+4)}{(x+4)(x+2)}[/mm] durch die
> Gleichung [mm]y=f_{4}(x)=x-4+\bruch{9}{x+2}[/mm] beschrieben werden
> kann.
>  Ich komme hier einfach nicht weiter. Ich gehe von der 1.
> Fkt. aus und versuche diese Umzuformen. Dann komme ich
> gerade soweit, dass ich (x+4) kürzen kann und dann noch
> [mm]f(x)=\bruch{(x-1)^2}{x+2}[/mm] habe.
> Aber ich weiß einfach nicht, wie ich dann weiter machen
> soll. Eine Hilfe wäre hier wirklich nicht schlecht und
> vielleicht auch generell ein Tipp, wie ich hier in Zukunft
> bei solchen Aufgaben die Lösung finde.

Keine Ahnung, ob es einfacher geht, aber eine Sache, die immer funktionieren müsste, ist Polynomdivision. Multipliziere dazu Zähler und Nenner aus und mache dann Polynomdivision. Du hast dann:

[mm] (x^3+2x^2-7x+4):(x^2+6x+8) [/mm]

Da erhältst du dann x-4 plus einen Restterm. Der Restterm ist: 9x+36, also musst du diesen Teil auch noch durch [mm] (x^2+6x+8) [/mm] teilen. Wenn du das etwas anders schreibst, kannst du es so kürzen, dass das rauskommt, was du brauchst: [mm] \frac{9x+36}{x^2+6x+8}=\frac{9(x+4)}{(x+4)(x+2)}=\frac{9}{x+2}. [/mm]

Und ich sehe gerade, dass du auch nach dem Kürzen von (x+4), wie du es hier gemacht hast, einfach noch Polynomdivision machen kannst. Das dürfte wohl einfacher sein, aber für den allgemeinen Fall, wenn du vorher nichts kürzen kannst, kannst du es so machen, wie oben beschrieben. :-)

Viele Grüße
Bastiane
[cap]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de