www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - Umformungsschritte
Umformungsschritte < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Umformungsschritte: Hilfestellung
Status: (Frage) beantwortet Status 
Datum: 08:30 Do 06.11.2014
Autor: Windbeutel

Aufgabe
[mm] (y-\bruch{r}{3})^3+r(y-\bruch{r}{3})^2+s(y-\bruch{r}{3})+t=0 [/mm]
Nach dem Auflösen der Klammern und dem Zusammenfassen der Terme wird daraus

[mm] y^3+(s-\bruch{1}{3}r^2)y+\bruch{2}{27}r^3-\bruch{1}{3}sr+t=0 [/mm]

Hallo,
ich versuche nun schon seit Gestern diese Umformung nach zu vollziehen, leider komme ich einfach nicht auf die angegebene Gleichung.

[mm] (y^3(-\bruch{1}{3}r)^3)+r(y^2(-\bruch{1}{3}r)^2)+sy-\bruch{1}{3}rs+t [/mm]

=

[mm] y^3-\bruch{1}{27}r^3+ry^2+\bruch{1}{9}r^3+sy-\bruch{1}{3}rs+t [/mm]

Nun erweitere ich [mm] \bruch{1}{9}r^3 [/mm]

[mm] y^3-\bruch{1}{27}r^3+\bruch{3}{27}r^3+ry^2+sy-\bruch{1}{3}rs+t [/mm]

=

[mm] y^3 +ry^2+sy+\bruch{2}{27}r^3-\bruch{1}{3}rs+t [/mm]

So und falls ich bis hier tatsächlich keine Fehler gemacht habe komme ich zumindest nicht weiter :-(

Es würde mich freuen, wenn sich jemand findet um mir meinen Denkfehler zu erläutern.
Vielen Dank im voraus

        
Bezug
Umformungsschritte: Antwort
Status: (Antwort) fertig Status 
Datum: 08:54 Do 06.11.2014
Autor: chrisno


>
> [mm](y-\bruch{r}{3})^3+r(y-\bruch{r}{3})^2+s(y-\bruch{r}{3})+t=0[/mm]
>  Nach dem Auflösen der Klammern und dem Zusammenfassen der
> Terme wird daraus
>  
> [mm]y^3+(s-\bruch{1}{3}r^2)y+\bruch{2}{27}r^3-\bruch{1}{3}sr+t=0[/mm]
>  Hallo,
>  ich versuche nun schon seit Gestern diese Umformung nach
> zu vollziehen, leider komme ich einfach nicht auf die
> angegebene Gleichung.
>  
> [mm](y^3(-\bruch{1}{3}r)^3)+r(y^2(-\bruch{1}{3}r)^2)+sy-\bruch{1}{3}rs+t[/mm]

Leider legst Du damit einen Fehlstart hin.
[mm](y-\bruch{r}{3})^3 = (y-\bruch{r}{3}) \cdot (y-\bruch{r}{3}) \codt (y-\bruch{r}{3})[/mm]
Rechne das mal aus, indem Du die Klammern nacheinander ausmultiplizierst. Für die ersten beiden Klammern kannst Du natürlich auch mit der passenden binomischen Formel arbeiten. Die brauchst Du auch für [mm] $(y-\bruch{r}{3})^2$. [/mm]
[mm] $+sy-\bruch{1}{3}rs+t$ [/mm] stimmt.

Bezug
                
Bezug
Umformungsschritte: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:36 Do 06.11.2014
Autor: Windbeutel

Oje, ich hab mir schon gedacht, dass ich einen banalen Fehler begehe.
Danke dir shr für deine Hilfe

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de