Umgebungsbasis < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 16:34 Fr 02.03.2012 | Autor: | mikexx |
Aufgabe | Hallo, ich würde gerne zeigen bzw. bestätigen, daß in einem metrischen Raum $(X,d)$ die offenen Kugeln mit Zentrum $x$ und den Radien $1/n, n=1,2,3,...$ eine Umgebungsbasis von $x$ bilden.
Dafür zunächst eine Erklärung des Begriffs "Umgebungsbasis", den ich meine (zitiert aus "Mengentheoretische Topologie", Boto von Querenburg, 3. Auflage):
Ist [mm] $(X,\mathcal{O})$ [/mm] ein topologischer Raum, so heißt ein Teilsystem [mm] $\mathcal{B}(x)$ [/mm] des Umgebungssystems [mm] $\mathcal{U}(x)$ [/mm] eine Umgebungsbasis von x, wenn zu jeder Umgebung [mm] $U\in\mathcal{U}(x)$ [/mm] en [mm] $B\in\mathcal{B}(x)$ [/mm] mit [mm] $B\subseteq [/mm] U$ existiert. |
Nun ist es ja so, daß
[mm] $\mathcal{U}(x)=\left\{V\subseteq X~|~\text{Es gibt eine offene Menge O, sodaß gilt:}~x\in O\subseteq V\right\}$ [/mm] und die offenen Mengen, die x enthalten, sind dann selbst auch enthalten.
Also auch die Epsilonkugeln, die man mit den Radien um x legt (offene Kugeln sind offene Mengen).
Wenn man jetzt diese offenen Kugeln in das System [mm] $\mathcal{B}(x)$ [/mm] reinpackt, so gilt doch daß es für jedes [mm] $U\in\mathcal{U}(x)$ [/mm] eine Kugel gibt, die in U enthalten ist, denn es enthält U eine offene Menge, die x enthält und für eine offene Menge gilt, daß es ein [mm] $\epsilon [/mm] > 0$ gibt, sodaß man um jeden Punkt eine Epsilonkugel ziehen kann und die liegt in der offenen Menge.
Das gilt also auch für den Punkt x.
Und weil nach dem Archimedischen Axiom 1/n < epsilon für alle epsilon aus den reelen Zahlen ist, liegen die offenen Kugeln mit Radius 1/n erst recht in den offenen Mengen, also in U.
Ich hoffe, ich habs richtig verstanden.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 11:10 So 04.03.2012 | Autor: | fred97 |
> Hallo, ich würde gerne zeigen bzw. bestätigen, daß in
> einem metrischen Raum [mm](X,d)[/mm] die offenen Kugeln mit Zentrum
> [mm]x[/mm] und den Radien [mm]1/n, n=1,2,3,...[/mm] eine Umgebungsbasis von [mm]x[/mm]
> bilden.
>
> Dafür zunächst eine Erklärung des Begriffs
> "Umgebungsbasis", den ich meine (zitiert aus
> "Mengentheoretische Topologie", Boto von Querenburg, 3.
> Auflage):
>
> Ist [mm](X,\mathcal{O})[/mm] ein topologischer Raum, so heißt ein
> Teilsystem [mm]\mathcal{B}(x)[/mm] des Umgebungssystems
> [mm]\mathcal{U}(x)[/mm] eine Umgebungsbasis von x, wenn zu jeder
> Umgebung [mm]U\in\mathcal{U}(x)[/mm] en [mm]B\in\mathcal{B}(x)[/mm] mit
> [mm]B\subseteq U[/mm] existiert.
>
> Nun ist es ja so, daß
>
> [mm]\mathcal{U}(x)=\left\{V\subseteq X~|~\text{Es gibt eine offene Menge O, sodaß gilt:}~x\in O\subseteq V\right\}[/mm]
> und die offenen Mengen, die x enthalten, sind dann selbst
> auch enthalten.
>
> Also auch die Epsilonkugeln, die man mit den Radien um x
> legt (offene Kugeln sind offene Mengen).
>
> Wenn man jetzt diese offenen Kugeln in das System
> [mm]\mathcal{B}(x)[/mm] reinpackt, so gilt doch daß es für jedes
> [mm]U\in\mathcal{U}(x)[/mm] eine Kugel gibt, die in U enthalten ist,
> denn es enthält U eine offene Menge, die x enthält und
> für eine offene Menge gilt, daß es ein [mm]\epsilon > 0[/mm] gibt,
> sodaß man um jeden Punkt eine Epsilonkugel ziehen kann und
> die liegt in der offenen Menge.
>
> Das gilt also auch für den Punkt x.
>
> Und weil nach dem Archimedischen Axiom 1/n < epsilon für
> alle epsilon aus den reelen Zahlen ist,
Na, na, na ! Ist [mm] \varepsilon [/mm] >0, so gibt es ein n [mm] \in \IN [/mm] mit 1/n < [mm] \varepsilon
[/mm]
> liegen die offenen
> Kugeln mit Radius 1/n erst recht in den offenen Mengen,
> also in U.
>
>
>
>
> Ich hoffe, ich habs richtig verstanden.
Ich denke schon.
FRED
|
|
|
|