www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Extremwertprobleme" - Umkehfunktion II
Umkehfunktion II < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Umkehfunktion II: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 16:13 Sa 18.11.2006
Autor: Kristof

Aufgabe
Für die Umkehrbare Funktion f mit f(x) = x + [mm] x^3 [/mm] kann man die Ableitung der der Umkehrfunktion f an manchen Stellen berechnen, ohne die Umkehfunktion f zu kennen.
Berechnen Sie : Ableitung der Umkehrfunktion an der Stelle f'(0); f'(2); f'(-10)

Hier stehe ich mal wieder total auf dem Schlauch.
Eben konnte ich wenigstens noch die Umkehrfunktion bilden, aber nichtmal das schaffe ich hier mehr :(
Ich weiß das ist nicht die Aufgabe, aber ich weiß auch ehrlich gesagt nicht wie ich Ableiten soll, ohne die Umkehrfunktion zu kennen.

Ich habe um die Umkehrfunktion zu finden folgendes gemacht :

F (x) = x+ [mm] x^3 [/mm]
Dann habe ich y und x ausgetauscht :

x = y + [mm] y^3 [/mm]
Aber wenn ich jetzt nach y auflösen möchte komme ich gar nicht weiter :(
Wäre lieb wenn ihr mir helft.
Vielleicht könnt mir ja auch sagen, wie man ohne die Umkehfunktion zu kennen Ableiten kann.

Dankeschön.
MfG
Kristof

        
Bezug
Umkehfunktion II: Antwort
Status: (Antwort) fertig Status 
Datum: 16:49 Sa 18.11.2006
Autor: Walde

hi Kristof,

das geht mit der Formel über die Ableitung der Umkehrfunktion.
Die Ableitung der Umkehrfunktion an der Stelle [mm] f(x_0) [/mm] ist:

[mm] (f^{-1})'(f(x_0))=\bruch{1}{f'(x_0)} [/mm]

Du musst also f ableiten. Die [mm] x_0 [/mm] rausfinden (die müssen und sind es auch eindeutig sein), bei denen [mm] f(x_0)=0, [/mm] 2 bzw. -10 gilt. Und dann einsetzen.

Bsp:

f(1)=2 (und es gibt auch kein anderes [mm] x_0 [/mm] mit [mm] f(x_0)=2, [/mm] das ist wichtig, sonst ist f an der Stelle nicht umkehrbar)

[mm] f'(x)=3x^2+1 [/mm]
[mm] f'(x_0)=3*1^2+1=4 [/mm]

Und mit der Formel gilt:

[mm] (f^{-1})'(2)=\bruch{1}{4} [/mm]

Und das ohne [mm] f^{-1} [/mm] zu kennen.

Alles klar?


L G walde

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de