www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Umkehrbarkeit
Umkehrbarkeit < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Umkehrbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:22 Di 17.01.2017
Autor: Trikolon

Hallo,

habe folgende Frage: Wie zeigt man, dass eine Funktion global invertierbar ist?
Die lokale Invertierbarkeit ist mir klar. Aber bisher habe ich immer nur Beispiele gesehen, in denen man zeigen konnte, dass die Funktion nicht global invertierbar ist, weil sie nicht injektiv war... Finde auch keine Definition zur globalen Invertierbarkeit

Danke im Voraus!

        
Bezug
Umkehrbarkeit: Welche Art Funktion?
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:50 Di 17.01.2017
Autor: Diophant

Hallo,

von welcher Art von Funktion sprichst du? Also etwa [mm] \IR\to\IR [/mm] (hier noch: stetig oder nicht) oder ganz allgemein?

Gruß, Diophant

Bezug
        
Bezug
Umkehrbarkeit: Antwort (fehlerhaft)
Status: (Antwort) fehlerhaft Status 
Datum: 19:15 Di 17.01.2017
Autor: leduart

Hallo
sie ist genau invertierter, wenn sie stetig und injektiv ist.
[mm] x^2 [/mm] ist global nicht umkehrbar aber [mm] f(x)=x^2 [/mm] von IR^+->IR^+ ist  global umkehrbar.
Gruß ledum


Bezug
                
Bezug
Umkehrbarkeit: Korrekturmitteilung
Status: (Korrektur) fundamentaler Fehler Status 
Datum: 19:25 Di 17.01.2017
Autor: Diophant

Hallo leduart,

> sie ist genau invertierter, wenn sie stetig und injektiv
> ist.
> [mm]x^2[/mm] ist global nicht umkehrbar aber [mm]f(x)=x^2[/mm] von
> IR^+->IR^+ ist global umkehrbar.
> Gruß ledum

Das ist völlig falsch, denn zur Umkehrbarkeit braucht es keine Stetigkeit. Letzendlich ist das einzige, was man forden muss Bijektivität.

Natürlich gibt es bestimmte Funktionstypen, natürlich gibt es die Frage nach der Deutung des Begriffs Funktion (also insbesondere, ob man Definitions- und Zielmenge berücksichtigt). Genau deshalb habe ich doch meine Mitteilung verfasst...

Gruß, Diophant

Bezug
        
Bezug
Umkehrbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 19:27 Di 17.01.2017
Autor: Diophant

Hallo,

> habe folgende Frage: Wie zeigt man, dass eine Funktion
> global invertierbar ist?
> Die lokale Invertierbarkeit ist mir klar. Aber bisher habe
> ich immer nur Beispiele gesehen, in denen man zeigen
> konnte, dass die Funktion nicht global invertierbar ist,
> weil sie nicht injektiv war... Finde auch keine Definition
> zur globalen Invertierbarkeit

Dann hast du nicht gründlich gesucht. Eine Funktion ist genau dann umkehrbar, wenn sie bijektiv ist.

Wenn du eine auf deine Bedürfnisse besser passende Antwort erwartest, dann solltest du wie schon angefragt zunäscht einmal mitteilen, von welcher Art Funktion wir hier sprechen.

Gruß, Diophant

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de