www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - Umkehrfunktion
Umkehrfunktion < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Umkehrfunktion: Idee
Status: (Frage) beantwortet Status 
Datum: 00:23 Mo 27.10.2008
Autor: grafzahl123

Aufgabe
sei R ring und sei a [mm] \in \IR [/mm] \ {0} ein  nilpotentes element. zeigen sie, dass 1-a invertierbar ist.

moin moin an alle die noch wach sind und n bissl lust auf mathe haben, würde mich freuen wenn einer antwortet :-)
also...
1-a ist ja invertierbar, wenn man di eumkehrfkt. bilden kann, mit der def. komm ich hier alerdings nich weit weil ich keine fkt. sehe.

ich hab mir weiter überlegt:
[mm] a^2=0 [/mm] , [mm] a^3=0 [/mm] usw. bis [mm] a^n-1=0 [/mm]
das heißt wenn ich am ende das inverse berechne und irgendetwas in der form [mm] a^n [/mm] mit n>1 wird null.
durch zufall bin ich dann auf die idee gekommen die dritte binomische formel auf a-1 anzuwenden:
[mm] (1-a)*(1+a)=1+a^2 [/mm] , wobei [mm] a^2=0 [/mm]
somit wäre (1+a) das inverse zu 1-a
nur wie zeige ich das mathematisch?
zufall ist glaub ich kein mathematischer beweis :-)

würde ich über hilfe freuen.

ich habe diese frage in keinem anderen forum gestellt.

        
Bezug
Umkehrfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 00:56 Mo 27.10.2008
Autor: Marcel

Hallo,

> sei R ring und sei a [mm]\in \IR[/mm] \ {0} ein  nilpotentes
> element. zeigen sie, dass 1-a invertierbar ist.
>  moin moin an alle die noch wach sind und n bissl lust auf
> mathe haben, würde mich freuen wenn einer antwortet :-)
>  also...
>  1-a ist ja invertierbar, wenn man di eumkehrfkt. bilden
> kann, mit der def. komm ich hier alerdings nich weit weil
> ich keine fkt. sehe.
>  
> ich hab mir weiter überlegt:
>  [mm]a^2=0[/mm] , [mm]a^3=0[/mm] usw. bis [mm]a^n-1=0[/mm]
>  das heißt wenn ich am ende das inverse berechne und
> irgendetwas in der form [mm]a^n[/mm] mit n>1 wird null.
>  durch zufall bin ich dann auf die idee gekommen die dritte
> binomische formel auf a-1 anzuwenden:
>  [mm](1-a)*(1+a)=1+a^2[/mm] , wobei [mm]a^2=0[/mm]
>  somit wäre (1+a) das inverse zu 1-a
>  nur wie zeige ich das mathematisch?
>  zufall ist glaub ich kein mathematischer beweis :-)
>  
> würde ich über hilfe freuen.

die Antwort findest Du in []diesen Artikel. Wo genau, werde ich Dir nicht sagen, da es zum einen ziemlich schnell ins Auge fällt und zum anderen sollst Du ja wenigstens noch ein klein wenig zu tun haben ;-)

P.S.: Sollte bei Dir nicht "Ring mit Einselement" vorausgesetzt sein?

Und ein weiterer Tipp zum Beweis, wenn $n$ der kleinste Index mit [mm] $a^n=0$ [/mm] ist:
Berechne einfach mal [mm] $(1-a)(1+a+a^2+...+a^{n-1})$ [/mm] "straight forward", also:
[mm] $$(1-a)(1+a+a^2+...+a^{n-1})=(1-a)*1+(1-a)*a+(1-a)*a^2+...+(1-a)*a^{n-2}+(1-a)*a^{n-1}=...$$ [/mm]

Gruß,
Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de