www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Umkehrfunktion bilden
Umkehrfunktion bilden < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Umkehrfunktion bilden: e-Funktion -> cosh umwandeln
Status: (Frage) beantwortet Status 
Datum: 01:07 Fr 27.02.2015
Autor: smoot

Aufgabe
(x,y [mm] \in \IR^{2}) [/mm]

  y = ln ( [mm] e^{x} [/mm] + [mm] \wurzel{2*e^{x}*sinh(x)} [/mm] )

  Es ist die Umkehrfunktion [mm] [f^{-1}(y)] [/mm] zu bestimmen.

Hallo zusammen,
ich habe folgendes Problem:

<=> y = ln ( [mm] e^{x} [/mm] + [mm] \wurzel{2*e^{x}*sinh(x)} [/mm] )

    [...]

<=> [mm] e^{2y} [/mm] - [mm] 2*e^{x}*e^{y} [/mm] = -1

Bis hierhin habe ich die Formel bereits aufgelöst.
Als Ergebnis habe ich nun:

<=> x = [mm] ln(\bruch{1}{2}*((-)e^{y})) [/mm]

Jedoch bin ich mir nicht sicher ob ich das so schreiben kann, da der ln > 0 sein muss?!

Außerdem wollte ich die vorherige Gleichung in den cosh(y)
umwandeln
und so die Gleichung zu x auflösen, also:

[mm] e^{2y} [/mm] - [mm] 2*e^{x}*e^{y} [/mm] = -1

   zu => def. cosh(x): [mm] \bruch{e^{x}+e^{-x}}{2} [/mm]


Rechenansatz:

[mm] e^{x} [/mm] = [mm] \bruch{-1-e^{2y}}{e^{y}*(-)2} [/mm]


Aber ab hier weiß ich nicht weiter.


Danke für eure Hilfe.

*Ich habe diese Frage in keinem anderen Forum gestellt*

        
Bezug
Umkehrfunktion bilden: Antwort
Status: (Antwort) fertig Status 
Datum: 04:03 Fr 27.02.2015
Autor: rmix22


> (x,y [mm]\in \IR^{2})[/mm]
>  
> y = ln ( [mm]e^{x}[/mm] + [mm]\wurzel{2*e^{x}*sinh(x)}[/mm] )
>
> Es ist die Umkehrfunktion [mm][f^{-1}(y)][/mm] zu bestimmen.
>  Hallo zusammen,
> ich habe folgendes Problem:
>  
> <=> y = ln ( [mm]e^{x}[/mm] + [mm]\wurzel{2*e^{x}*sinh(x)}[/mm] )
>  
> [...]
>
> <=> [mm]e^{2y}[/mm] - [mm]2*e^{x}*e^{y}[/mm] = -1

Nicht ganz. Du hast da einmal beidseitig quadriert und daher gilt nur
[mm] $\Rightarrow e^{2y}- 2*e^{x}*e^{y}=-1$ [/mm]


>  
> Bis hierhin habe ich die Formel bereits aufgelöst.
>  Als Ergebnis habe ich nun:
>  
> <=> x = [mm]ln(\bruch{1}{2}*((-)e^{y}))[/mm]  [notok]  

Wirklich? Das bezweifle ich. Das solltest du uns jetzt doch bitte Schritt für Schritt vorrechnen.

> Jedoch bin ich mir nicht sicher ob ich das so schreiben
> kann, da der ln > 0 sein muss?!

Schreiben kannst du das natürlich so, aber es ist falsch.
Außerdem: Der Logarithmus is eine Funktion und keine Zahl. Er kann daher weder größer noch kleiner oder gleich Null sein. Du meinst vermutlich, dass das Argument der Logarithmusfunktion eine positive Zahl sein muss, wenn man sich beim Ergebnis auf reelle Zahlen beschränken möchte. Der Funktionswert der Logarithmusfunktion an einer bestimmten Stelle kann natürlich sehr wohl auch negativ sein. Auch unter diesem Gesichtspunkt ist die Aussage, "der ln" muss größer Null sein fragwürdig.

>  
> Außerdem wollte ich die vorherige Gleichung in den
> cosh(y)
> umwandeln und so die Gleichung zu x auflösen, also:

Du kannst eine Gleichung nicht in eine Funktion "umwandeln"!

>  
> [mm]e^{2y}[/mm] - [mm]2*e^{x}*e^{y}[/mm] = -1
>
> zu => def. cosh(x): [mm]\bruch{e^{x}+e^{-x}}{2}[/mm]
>  

Gehe ich Recht in der Annahme, dass du den $cosh$ deswegen ins Spiel bringen möchtest, weil du eine Lösung deiner Aufgabe vorliegen hast, die besagt dass [mm]f^{-1}(y)=ln\left(cosh(y)\right)\mbox{ mit }y\in\IR_0^+[/mm] ist?

> Rechenansatz:
>
> [mm]e^{x}[/mm] = [mm]\bruch{-1-e^{2y}}{e^{y}*(-)2}[/mm]
>  

Besser: [mm]e^x=\br{-1-e^{2y}}{-2*e^y}[/mm], denn das Minuszeichen allein in der Klammer ist doch recht eigenartig. Da hätte sich zumindest die Zwei dazu gesellen sollen. Aber trotzem
[ok] Na das sieht doch jetzt aber viel besser aus als dein vorheriges Ergebnis der Formelumstellung.

> Aber ab hier weiß ich nicht weiter.
>  

Die Hauptarbeit ist jetzt  doch schon erledigt!
Erweitere den Bruch mit [mm] $\left(-1\right)$ [/mm] um die Vorzeichen zu sanieren und dividiere dann Zähler und Nenner durch [mm] $e^{y}$. [/mm] Dann sollte dich der [mm] $cosh\left(y\right)$ [/mm] schon anlachen.

Gruß RMix



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de