www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Umkehrsatz
Umkehrsatz < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Umkehrsatz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:18 Fr 09.07.2010
Autor: kappen

Aufgabe
Sei [mm] f(x,y)=(x^3y,x^2+y^2)^T [/mm]
a) Bestimmen Sie die Ableitung von f in (1,1)
b) Folgern sie, dass f in einer Umgebung von (1,1) eine lokale Umkehrabbildung [mm] f^{-1} [/mm] besitzt
c) geben sie eine näherung für [mm] f^{-1}(11/10,2) [/mm] an.

hi :)

a) [mm] Df=\pmat{ 3 & 1 \\ 2 & 2 } [/mm]

b) Jetzt gehts los.. ich weiß, dass f stetig diffbar sein muss. Ist es, als Komposition diffbarer Funktionen. Ebenso ist Df(1,1) invertierbar, da voller Rang.

Wie kann ich da weiter argumentieren?

c) Hmm? Also 11/10 ist ein bisschen mehr als 1.. und f bildet (1,1) auf (1,2) ab. Soll ich einfach (1,2) nehmen oder was soll das?
Ich dachte vllt, man könnte das über die Ableitung der Umkehrfunktion machen, aber das ist ja dann eben die Ableitung und nicht nur die Umkehrfunktion. Hilfe ;)

danke euch!

        
Bezug
Umkehrsatz: Antwort
Status: (Antwort) fertig Status 
Datum: 18:38 Fr 09.07.2010
Autor: MathePower

Hallo kappen,

> Sei [mm]f(x,y)=(x^3y,x^2+y^2)^T[/mm]
>  a) Bestimmen Sie die Ableitung von f in (1,1)
>  b) Folgern sie, dass f in einer Umgebung von (1,1) eine
> lokale Umkehrabbildung [mm]f^{-1}[/mm] besitzt
>  c) geben sie eine näherung für [mm]f^{-1}(11/10,2)[/mm] an.
>  hi :)
>  
> a) [mm]Df=\pmat{ 3 & 1 \\ 2 & 2 }[/mm]
>  
> b) Jetzt gehts los.. ich weiß, dass f stetig diffbar sein
> muss. Ist es, als Komposition diffbarer Funktionen. Ebenso
> ist Df(1,1) invertierbar, da voller Rang.
>  
> Wie kann ich da weiter argumentieren?


Im Punkt [mm]\left(x_{0},y_{0},u_{0},v_{0})=\left(1,1,1,2)[/mm] sind die Gleichungen

[mm]x^{3}*y=u[/mm]

[mm]x^{2}+y^{2}=y[/mm]

erfüllt.

Da die Funktionaldeterminante in diesem Punkt  verschieden von Null ist.
existieren eindeutig bestimmte stetige Funktionen [mm]x\left(u,v\right), \ y\left(u,v\right)[/mm] mit

[mm]x^{3}\left(u,v\right)*y\left(u,v \right)=u[/mm]

[mm]x^{2}\left(u,v\right)+y^{2}\left(u,v\right)=y[/mm]


> c) Hmm? Also 11/10 ist ein bisschen mehr als 1.. und f
> bildet (1,1) auf (1,2) ab. Soll ich einfach (1,2) nehmen
> oder was soll das?
>  Ich dachte vllt, man könnte das über die Ableitung der
> Umkehrfunktion machen, aber das ist ja dann eben die
> Ableitung und nicht nur die Umkehrfunktion. Hilfe ;)


Nun, Du brauchst die Ableitungrn der Funktionen [mm]x\left(u,v\right), \ y\left(u,v\right)[/mm] an der Stelle [mm](1,2)[/mm]

Diese erhältst Du, wenn Du obiges Gleichungsystem nach u und v differenzierst.

Dann ist

[mm]x\left(u,v\right)\ \approx x\left(u_{0},v_{0}\right)+x_{u} \left(u_{0},v_{0}\right)*\left(u-u_{0}\right)+x_{v} \left(u_{0},v_{0}\right)*\left(v-v_{0}\right)[/mm]

[mm]y\left(u,v\right)\ \approx y\left(u_{0},v_{0}\right)+y_{u} \left(u_{0},v_{0}\right)*\left(u-u_{0}\right)+y_{v} \left(u_{0},v_{0}\right)*\left(v-v_{0}\right)[/mm]


>  
> danke euch!


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de