www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Vektoren" - Umkreismittelpunkt,Umkreis etc
Umkreismittelpunkt,Umkreis etc < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Umkreismittelpunkt,Umkreis etc: Vektoren Dreieck
Status: (Frage) beantwortet Status 
Datum: 19:55 Di 11.02.2014
Autor: MathematikLosser

Aufgabe
Gegeben ist das Dreieck
A (15/1)
B (11/13)
C (3/5)

Berechne den Umkreismittelpunkt, die Gleichung des Umkreises, die Tangenten der Eckpunkte, deren Winkel und die des Dreiecks.


Mein Versuch: Umkreismittelpunkt:
HBC [mm] =\bruch{C+B}{2} [/mm] = [mm] \bruch{\vektor{11\\ 13}+\vektor{3 \\ 5}}{2} [/mm] = [mm] \vektor{7 \\ 9} [/mm]

Nun C-B= [mm] \vektor{3 \\ 5}-\vektor{11 \\ 13}=\vektor{-8 \\ -8} [/mm]

=> [mm] -8x-8y=\vektor{7 \\ 9}*\vektor{-8 \\ -8} [/mm]
-8x-8y= -128

HAB= [mm] \bruch{\vektor{15 \\ 1}+\vektor{3 \\ 5}}{2}= \vektor{13 \\ 7} [/mm]

B-A = [mm] \vektor{11 \\ 13}-\vektor{15 \\ 1}= \vektor{-4 \\ 12} [/mm]

=> -4x+12y= [mm] \vektor{-4 \\ 12}*\vektor{13 \\ 7} [/mm]
-4x+12y= 32

U: -8x-8y=-128
-4x+12y=32   /*2

-8x-8y=-128
-8x+24y=64
-32y=-192
y=6

x: -8x-8*6=-128
x=10

U= (10/6)

Umkreisgleichung:

k:(x-xm)²+(y-ym)²=r²

(15-10)²+(1-6)²=r²
25+25=r²
r²=50

Kreisgleichung:
k:(x-10)²+(y-6)²=50


Tangenten:
Tangentenspaltform:
(x-xm)*(xa-xm)+(y-ym)*(ya-ym)

Ta: (x-10)*(15-10)+(y-6)*(1-6)
=(x-10)*5+(y-6)*(-5)
=5x-50+5y+30
Ta: 5x-5y=20

Tb: (x-10)*(11-10)+(y-6)*(13-6)
=x-10+7y-42
Tb= x+7y=52

Tc: (x-10)*(3-10)+(y-6)*(5-6)
-7x+70-y+6
-7x-y=-76 /*(-1)
7x+y=76

Winkel:
cos phi [mm] =\bruch{\overrightarrow{g1}*\overrightarrow{g2}}{/\overrightarrow{g1}/*/\overrightarrow{g2}/} [/mm]

[mm] \bruch{\vektor{5 \\ -5}*\vektor{1 \\ 7}}{\wurzel{50}*\wurzel{50}} [/mm]
[mm] =\bruch{\vektor{5 \\ -35}}{50} [/mm]

[mm] cos=\bruch{-30}{50} [/mm]
ca. 126,87°

Stimmen meine Berechnungen und wie berechne ich mir nun die Winkel des Dreicks?
Meine Überlegung wäre mittels Spitze-Schaft die Seitenlängen zu berechnen und dann tan bzw. sin bzw. cosinus anzuwenden?


        
Bezug
Umkreismittelpunkt,Umkreis etc: Antwort
Status: (Antwort) fertig Status 
Datum: 21:43 Di 11.02.2014
Autor: chrisno


> Gegeben ist das Dreieck
>  A (15/1)
>  B (11/13)
>  C (3/5)
>  ....
> Kreisgleichung:
> k:(x-10)²+(y-6)²=50

A, B und C eingestzt, es kommt immer 50 heraus. [ok]

>  
>
> Tangenten:
>  Tangentenspaltform:
>  (x-xm)*(xa-xm)+(y-ym)*(ya-ym)

= ? und hier kommt es wirklich drauf an. Schau mal zu Beispiel bei
http://www.mathe-online.at/materialien/sarah.wendler/files/Textfiles/Kreistangenten.pdf

>  
> Ta: (x-10)*(15-10)+(y-6)*(1-6)
>  =(x-10)*5+(y-6)*(-5)
>  =5x-50+5y+30
>  Ta: 5x-5y=20

A zur Probe eingesetzt, passt nicht. [notok]
Schau Dir mal die Zeile an, in der Du alle Klammern aufgelöst hast.

>  
> Tb: (x-10)*(11-10)+(y-6)*(13-6)
>  =x-10+7y-42
>  Tb= x+7y=52

Vorzeichenfehler an der gleichen Stelle wie vorher.

>  
> Tc: (x-10)*(3-10)+(y-6)*(5-6)
>  -7x+70-y+6
>  -7x-y=-76 /*(-1)
>  7x+y=76

C zur Probe eingesetzt: passt nicht
>....   wie berechne ich mir nun die

> Winkel des Dreicks?
>  Meine Überlegung wäre mittels Spitze-Schaft die

Schaft ?

> Seitenlängen zu berechnen und dann tan bzw. sin bzw.
> cosinus anzuwenden?

Du bekommst ganz leicht die Seiten als Vektoren.

>  


Bezug
                
Bezug
Umkreismittelpunkt,Umkreis etc: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:54 Mi 12.02.2014
Autor: MathematikLosser

Um die Tangente an den Punkt zu legen benötige ich nun also die Formel
(T-M)*(X-M)=r²
http://www.mathe-online.at/materialien/sarah.wendler/files/Textfiles/Kreistangenten.pdf

bei ta => (15-10)*(1-6)=50???
Doch wie stelle ich damit eine Tangente auf?

Kann mir bitte jemand erklären wie ich die Spaltform der Tangente hier richtig anwende?

Bezug
                        
Bezug
Umkreismittelpunkt,Umkreis etc: Antwort
Status: (Antwort) fertig Status 
Datum: 15:34 Mi 12.02.2014
Autor: MathePower

Hallo MathematikLosser,

> Um die Tangente an den Punkt zu legen benötige ich nun
> also die Formel
>  (T-M)*(X-M)=r²
>  
> http://www.mathe-online.at/materialien/sarah.wendler/files/Textfiles/Kreistangenten.pdf
>  
> bei ta => (15-10)*(1-6)=50???
>  Doch wie stelle ich damit eine Tangente auf?
>  
> Kann mir bitte jemand erklären wie ich die Spaltform der
> Tangente hier richtig anwende?


Die Gleichung der Tangente lautet doch:

[mm](x-xm)*(xa-xm)+(y-ym)*(ya-ym)=\red{50}[/mm]

Bei Deinen Berechnungen der Tangenten
hast Du nur die linke Seite berechnet.


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de