www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Umordnung einer Reihe
Umordnung einer Reihe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Umordnung einer Reihe: Konvergenzverhalten
Status: (Frage) beantwortet Status 
Datum: 22:55 Mo 23.11.2009
Autor: Salamence

Aufgabe
Sei [mm] \nu(k) [/mm] eine bijektive Abbildung von [mm] \IN [/mm] nach [mm] \IN [/mm]
mit [mm] \nu(1)=1 [/mm] sowie [mm] \nu(2)=2 [/mm] und für k>2:


[mm] \nu(k)=\begin{cases} k+k/3, & \mbox{für } \mbox{ 3 teilt k} \\ k-(k-1)/3, & \mbox{für } \mbox{ 3 teilt (k-1)} \\ k+(k-2)/3, & \mbox{für } \mbox{ 3 teilt (k-2)}\end{cases} [/mm]

1. Zeigen Sie, dass die Umordnung der alternierenden harmonischen Reihe

[mm] \summe_{i=1}^{\infty}(-1)^{\nu(k)+1}*\bruch{1}{\nu(k)} [/mm] konvergiert und gilt: [mm] \summe_{i=1}^{\infty}(-1)^{\nu(k)+1}*\bruch{1}{\nu(k)}=\bruch{1}{2}*\summe_{i=1}^{\infty}(-1)^{(k)+1}*\bruch{1}{k} [/mm]

2. Zeigen Sie, dass für eine bedingt konvergente Reihe gilt:
(i) Für alle reelen Zahlen existiert eine Umordnung, sodass die Reihe diesen Wert annimmt.
(ii) Es gibt eine Umordnung, sodass die Reihe nach [mm] +\infty [/mm] divergiert.
(iii) Es gibt eine Umordnung, sodass die Reihe nach [mm] -\infty [/mm] divergiert.

Ich habe irgendwie nicht so wirklich Ahnung, wie man an die Aufgabe herangehen soll. Man kann sich natürlich erstmal die Permutation [mm] \nu [/mm] angucken und dann die Umordnung der Reihe.
Besonders kann ich irgendwie nicht erkennen, warum das nun ausgerechnet die Hälfte des Grenzwertes der alternierenden harmonischen Reihe sein sollte.

Zum zweiten Teil gibt es den Tipp, dass die Summe über alle [mm] max({0,a_{k}} [/mm] )beziehungsweise über alle [mm] min({0,a_{k}} [/mm] )divergiert, wenn die Reihe von der Folge [mm] (a_{k}) [/mm] bestimmt konvergent ist.
Aber ich weiß auch nicht, wie mir das weiterhelfen soll, insbesondere bei (i), wenn dann schon bei (ii)/(iii). Was wäre denn, wenn man zuerst alle positiven Folgenglieder nimmt und dann alle negativen dazu. Reicht es zu sagen, dass divergiert, da die Summe über max(0,a) (also alle positiven) und die Summe über min(0,a) (also alle negativen) divergieren?

        
Bezug
Umordnung einer Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 01:21 Di 24.11.2009
Autor: pelzig

Zum zweiten Teil: Der Hinweis dass die Reihen der positiven [mm] (a_k) [/mm] bzw. negativen Summanden [mm] (b_k) [/mm] jeweils divergieren, ist der Schlüssel. Nimm dir nun eine beliebige Zahl [mm] $C\in\IR$, [/mm] o.B.d.A. [mm] $C\ge [/mm] 0$. Wir wolen eine Folge [mm] $c_k$ [/mm] konstruieren sodass [mm] $\sum_k c_k=C$. [/mm] Nun setzt du [mm] c_k=a_k [/mm] solange, bis zum ersten mal [mm] $\sum_{k=1}^N c_k>C$ [/mm] ist (das geht weil die Summe über [mm] a_k [/mm] divergiert). Nun addierst du solange [mm] $b_k$'s, [/mm] bis zum ersten mal C unterschritten wird. Dieses Spiel macht man jetzt unendlich oft (man muss hier streng mathematisch die Folge der [mm] c_k [/mm] induktiv definieren!), dabei wird garantiert auch jeder der ursprünglichen Summanden genau einmal benutzt. Dann konvergiert [mm] $\sum c_k$ [/mm] gegen C!

Wenn du das verstanden, sauber ausgeführt und alles bewiesen hast, werden dir (ii) und (iii) ganz leicht vorkommen.

Gruß, Robert

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de