www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Umordnung von Gliedern
Umordnung von Gliedern < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Umordnung von Gliedern: Korrektur, Lösungshilfe
Status: (Frage) beantwortet Status 
Datum: 21:47 So 06.01.2013
Autor: Dym

Aufgabe
Aufgabe:
Betrachten Sie die alternierende harmonische Reihe [mm] \summe_{n=1}^{\infty} \bruch{(-1)^{n-1}}{n} [/mm] =: s, die konvergent, aber nicht absolut konvergent ist.

a) Zeigen Sie, dass für die Umordnung, bei der sich immer ein positives Glied und zwei negative Glieder abwechseln, gilt:
1 - [mm] \bruch{1}{2} [/mm] - [mm] \bruch{1}{4} [/mm] + [mm] \bruch{1}{3} [/mm] - [mm] \bruch{1}{6} [/mm] - [mm] \bruch{1}{8} [/mm] + [mm] \bruch{1}{5} [/mm] - [mm] \bruch{1}{10} [/mm] - [mm] \bruch{1}{12} [/mm] + - - ... = [mm] \bruch{8}{2}. [/mm]

b) Beschreiben Sie eine Umordnung der Reihe, sodass die Partialsummen gegen 2013 konvergieren.

Hi liebe MRer!
ich habe die Aufgabe schon angefangen zu bearbeiten, bin aber bei meiner Lösung nicht ganz sicher, ich habe es für n = 6 gezeigt, aber ich weiß nicht ob das reicht:
Ich habe meine Lösung fotografiert, ich hoffe ihr könnt alles lesen :)
Hier der Link:

[]LINK: Aufgabe a)

Ihr könnt das Foto runterladen und reinzoomen.
Liebe Grüße
AJ

        
Bezug
Umordnung von Gliedern: Antwort
Status: (Antwort) fertig Status 
Datum: 22:03 So 06.01.2013
Autor: abakus


> Aufgabe:
>  Betrachten Sie die alternierende harmonische Reihe
> [mm]\summe_{n=1}^{\infty} \bruch{(-1)^{n-1}}{n}[/mm] =: s, die
> konvergent, aber nicht absolut konvergent ist.

Hallo,
1-(1/2)+(1/3)-(1/4)... konvergiert gegen irgendeinen Wert (welchen?)

>  
> a) Zeigen Sie, dass für die Umordnung, bei der sich immer
> ein positives Glied und zwei negative Glieder abwechseln,
> gilt:
>  1 - [mm]\bruch{1}{2}[/mm] - [mm]\bruch{1}{4}[/mm] + [mm]\bruch{1}{3}[/mm] -
> [mm]\bruch{1}{6}[/mm] - [mm]\bruch{1}{8}[/mm] + [mm]\bruch{1}{5}[/mm] - [mm]\bruch{1}{10}[/mm]

Das ist das selbe wie (1/2)-(1/4)+(1/6)-(1/8)... (darauf bist du selbst gekommen); und das ist nun in jedem Summand genau die Hälfte von
1-(1/2)+(1/3)-/1/4)...

Gruß Abakus

> - [mm]\bruch{1}{12}[/mm] + - - ... = [mm]\bruch{8}{2}.[/mm]
>  
> b) Beschreiben Sie eine Umordnung der Reihe, sodass die
> Partialsummen gegen 2013 konvergieren.
>  Hi liebe MRer!
>  ich habe die Aufgabe schon angefangen zu bearbeiten, bin
> aber bei meiner Lösung nicht ganz sicher, ich habe es für
> n = 6 gezeigt, aber ich weiß nicht ob das reicht:
>  Ich habe meine Lösung fotografiert, ich hoffe ihr könnt
> alles lesen :)
>  Hier der Link:
>  
> []LINK: Aufgabe a)
>  
> Ihr könnt das Foto runterladen und reinzoomen.
>  Liebe Grüße
>  AJ


Bezug
                
Bezug
Umordnung von Gliedern: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:33 So 06.01.2013
Autor: Dym

Hi danke für deine Antwort,
s konvergiert gegen log(2)!
Meine letzte Frage ist nur, reicht das was ich geschrieben habe?
Danke
LG
AJ

Bezug
                        
Bezug
Umordnung von Gliedern: Antwort
Status: (Antwort) fertig Status 
Datum: 22:13 Mo 07.01.2013
Autor: abakus


> Hi danke für deine Antwort,
>  s konvergiert gegen log(2)!
>  Meine letzte Frage ist nur, reicht das was ich geschrieben
> habe?

Natürlich nicht.
Die Beweiskraft eines einzelnes Beispiel mit n=6 geht gegen Null.

Gruß Abakus

>  Danke
>  LG
> AJ


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de