www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Komplexe Zahlen" - Umrechnung
Umrechnung < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Umrechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:11 Do 17.09.2009
Autor: domerich

Aufgabe
[Dateianhang nicht öffentlich]

leider kann ich die Rechenschritte nicht nachvollziehen, was wurde hier gemacht?

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
        
Bezug
Umrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:20 Do 17.09.2009
Autor: schachuzipus

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Hallo domerich,

hier wurde die eulersche Identität benutzt, und die Zahlen $e^{j\omega n}$ und $\alpha\cdot{}e^{j\omega(n-1)}$ in trigonometrisher Darstellung geschrieben.

Es gilt $r\cdot{}e^{j\varphi}=r\cdot{}\left(\cos(\varphi)+j\cdot{}\sin(\varphi)\right)$

Hier mit $r=1$ und $\varphi=\omega n$ bzw. $r=\alpha$ und $\varphi=\omega(n-1)$

Dann gem. $\int\limits_{a}^{b}(u(z)+j\cdot{}v(z) \ dz}=\int\limits_a^b{u(z) \ dz} \ + \ j\cdot{}\int\limits_a^b{v(z) \ dz}$ aufteilen und integrieren.

Entweder durch scharfes Hinsehen oder mit einer linearen Substitution des/der Argument(s)e von $\sin/\cos$

Gruß

schachuzipus


Bezug
                
Bezug
Umrechnung: hat sich erledigt
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 15:44 Do 17.09.2009
Autor: domerich

für den ersten Term wäre doch

[mm] \bruch{1}{2 \pi } [/mm] ( [mm] \integral_{-\pi}^{\pi}{cos(\pi n) d\omega}+ \integral_{-\pi}^{\pi}{j sin(\pi n) d\omega} [/mm] kann das sein?

das zu integrieren  wäre z.b. [mm] \bruch{1}{2 \pi n} [/mm] [ [mm] sin(\omega [/mm] n))] + [mm] \bruch{1}{2 \pi n} [/mm] [j cos [mm] (\omega [/mm] n)]

zum Sinus Term würde ich sagen dass er für alle n Null wird, aber in der Lösung sind nur Sinus Terme zu sehen, was begreife ich nicht?



[mm] (cos(\pi n)-cos(-\pi [/mm] n) ist Null weil cosinus eine gerade funktion ist

wie sieht es aus mit sinus [mm] (sin(\pi n)-sin(-\pi [/mm] n)?

Bezug
        
Bezug
Umrechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:17 Do 17.09.2009
Autor: domerich

sin wird also zu 2sin hier

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de